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Abstract

In this expository note we embark on a short tour the regularity theory of rectifiable varifolds.
We primarily give a detailed accounting of Camillo De Lellis’ proof of the Allard ε-regularity theorem
simplified to the case of integer rectifiable varifolds with an L∞ bound on mean curvature. In the process,
cosmetic adjustments are made and the exposition is greatly expanded. We also briefly introduce the
general theorem as it applies to rectifiable varifolds, as well as a recent generalization of due to Theodora
Bourni and Alexander Volkmann in which the Lp bounds on mean curvature are replaced by a regularity
condition on the generalized normal of the varifold.
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1 Introduction and Preliminaries

Before diving into the regularity theory of rectifiable varifolds, we first collect together some basic results in
measure theory, real analysis, functional analysis, and linear algebra. Unless a proof is particular exciting
or seemingly not documented elsewhere, we opt for brevity in forgoing proofs, and refer the reader to the
excellent texts of Evans [Eva10], Evans and Gariepy [EG15], Maggi [Mag12], Simon [Sim14], et cetera, for
the details.

1.1 Introductory Measure Theory

Borel Measures

We begin by discussing briefly the notion of measures in general. Let X be a set, and P(X) its power set.
An outer measure µ on X is a map µ : P(X)→ [0,∞] such that the following properties hold:

• µ(∅) = 0;

• For every E ⊂ X and {Ei}∞i=1 ⊂ P(X) with E ⊂
⋃∞
i=1Ei, we have µ(E) 6

∑∞
i=1 µ(Ei).

If X is a set, Σ ⊂ P(X) is a σ-algebra, and µ : P(X) → [0,∞] is an outer measure satisfying the countable
additivity property

• For every disjoint countable collection {Ei} ⊂ Σ, µ (
⋃∞
i=1Ei) =

∑∞
i=1 µ(Ei),

then we say that the triple (X,Σ, µ) is a measure space, and that µ is a measure. In any case, a set E ⊂ X
is said to be measurable with respect to an (outer) measure µ if

µ(A) = µ(A ∩ E) + µ(A \ E)

for every A ⊂ X. It is an elementary fact that measurable sets form a family with a good set-algebraic
structure, as exhibited by the following result:

Theorem 1.1 (Caratheodory). Let µ be an outer measure on a space X, and let M(µ) be the collection of
all µ-measurable subsets of X. Then M(µ) is a complete1 σ-algebra, on which µ is a measure2.

We can ask that an outer measure µ on X be determined by its action on M(µ), in the sense that if A ⊂ X
then a µ-measurable set E ⊃ A exists such that µ(A) = µ(E). Such outer measures are called regular.
The following result, which allows us to pass limits through measures in certain situations, illustrates how
regularity can significantly improve the behavior of a measure:

Proposition 1.1. Let (X,µ,Σ) be a measure space, and {Ej} ⊂ Σ a sequence of µ-measurable sets. If
Ej ⊂ Ej+1, then limj→∞ µ(Ej) = µ(

⋃∞
j=1Ej). In case µ is regular, then in fact this holds even if the Ej are

not measurable. If Ej ⊃ Ej+1 and µ(Ej) <∞ for some j, then limj→∞ µ(Ej) = µ(
⋂∞
j=1Ej).

If now X is a topological space, then it is often useful to consider outer measures which play nicely with
the topology of X. The family of open sets in X generates a σ-algebra B(X) called the Borel σ-algebra,
and if an outer measure µ on X has the property that B(X) ⊂M(µ), then we call µ a Borel outer measure.
A Borel regular outer measure µ on X is a Borel outer measure such that if A ⊂ X, then there exists an
E ⊂ B(X) such that µ(A) = µ(E)3.

If we add a bit more topological structure to X, then we discover that Borel regular measures have good
approximation properties in terms of open, closed, and compact sets. In particular, we have the following:

1If Σ contains all subsets of X on which µ is trivial, then we say that Σ is complete.
2We often refer to outer measures and measures interchangeably with the understanding that the object in question will be

a measure in earnest when restricted to its distinguished sigma algebra.
3Note that this is slightly at odds with the marginally more general definition of a regular outer measure, in that for a Borel

regular outer measure we require E ∈ B(X) rather than just E ∈M(µ).
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Theorem 1.2. Let X be a topological space in which every closed set is a countable intersection of open
sets. Let µ be a Borel regular measure on X which is open σ-finite4. Then if A ⊂ X,

µ(A) = inf
U⊃A
Uopen

µ(U)

and if A ∈M(µ),
µ(A) = sup

C⊂A
Cclosed

µ(C)

If we require X to be Hausdorff and σ-compact5, then we can replace closed sets with compact sets the
second conclusion.

Before moving onto the construction of the Hausdorff and Lebesgue measures, we introduce a useful
construction allowing us to localize measures. Letting X be any space, µ an outer measure on X, and
Y ⊂ X any subset, we can define the restriction of µ to Y , denoted by µ Y , by

(µ Y )(A) ..= µ(A ∩ Y ). for all A ⊂ X

It so happens that, regardless of what Y was, M(µ) ⊂M(µ Y ). Moreover, the property of Borel regularity
is retained under restriction, provided that the set on which we are localizing is a measurable set with finite
measure. In a similar vein, when a measure only “sees” the the subsets of a fixed set, we say that the measure
is supported on that set. Precisely, we say that a measure µ on a space X is concentrated, or supported,
on a set F ⊂ X provided that µ(X \ F ) = 0. In case X is a separable topological space and µ is Borel, we
call the intersection of all closed sets on which µ is concentrated the support of µ, denoted by sptµ. Thus,
sptµ is the smallest closed set on which µ is concentrated. An especially useful way to view the support of
a measure is as

sptµ = X \
⋃

µ(U)=0
U open

U,

or in the case of a separable metric space X,

sptµ = {x : µ(Br(x)) > 0 for all r > 0}.

The Hausdorff and Lebesgue Measures

We now set to work on producing the measures which underlie all that is to follow. For the full details, see
any book on measure theory such as [EG15], [Mag12], or [Sim14]. Let (X, d) be a metric space, and define
for each s > 0 the constants

ωs ..=
πs/2

Γ(1 + s/2)

where Γ is the Gamma function defined for all s > 0 by

Γ(s) ..=

∫ ∞
0

ts−1e−tdt.

This seems a bit unmotivated at first, but is done so that ωs agrees with the volume of the s-dimensional
unit ball in Rs when s is an integer6.

Fix an s > 0, let δ ∈ (0,∞], and define the size δ-approximation to the s-dimensional Hausdorff
measure by

Hsδ(A) ..= inf
F

∑
F⊂F

ωs

(
diam(F )

2

)s
for any A ⊂ X

4A measure µ on a topological space X is said to be open σ-finite if X can be realized as a countable union of open sets,
each with finite µ measure.

5A topological space is said to be σ-compact if it can be realized as a countable union of compact sets.
6By the volume of the k dimensional ball in Rk, we mean the result of integrating the constant function 1 over the unit

ball by elementary Riemann integration (not requiring a measure)–which agrees with the volume long ago determined by an
argument of Archimedes, and apocryphally inscribed on his tombstone.
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where the infimum is taken over all countable coverings F ⊂ P(X) of the set A with diam(F ) < δ. In case
no such covering exists, we set Hsδ(A) =∞. Notice that, since diam(F ) = diam(F̄ ), we can require that all
the covering sets be closed. Similarly, we can impose that the covering sets be convex, be subsets of A, et
cetera. We can also require the covering sets to be open, by taking small open neighborhoods of the sets in
any covering. Now, define the s-dimensional Hausdorff measure on X by

Hs(A) ..= sup
δ∈(0,∞]

Hsδ(A) = lim
δ↘0
Hsδ(A) for all A ⊂ X.

Notice that this is well defined since Hsδ(A) is monotone decreasing in δ. Therefore, the Hausdorff measures
can be thought of in the following way. We cover our set A with a countable number of sets which do
not get too big, and determine the “total volume” of the covering if we had instead used “s-dimensional
balls” with diameters equal to those of the covering sets. These coverings should intuitively be thought of
as approximations to our set A, with smaller volumes representing increasingly better approximations. We
then take the Hausdorff measure of A as the limit of these volumes under the restriction to finer and finer
coverings.

The Hausdorff measures have several properties which make them well-suited for use in geometric measure
theory. For instance, they appear naturally in the area and co-area formulas which we will soon see in an
upcoming section. Amongst the most fundamental reasons, however, is that the Hausdorff measures are
Borel measures. This can be proven starting from the definition of the Hausdorff measure as the limit of its
δ-approximations, and applying the following result:

Theorem 1.3 (Caratheodory’s Criterion). Let X be a metric space, µ an outer measure on X, and suppose
that for all subsets A,B ⊂ X with dist(A,B) > 0, we have µ(A ∪ B) = µ(A) + µ(B). Then µ is a Borel
measure.

To wit, for any two sets A and B with dist(A,B) > 0, as soon as δ < 1
2dist(A,B) we have that Hsδ(A∪B) =

Hsδ(A) + Hsδ(B) (since we can throw away any sets in the covering not intersecting either A or B). Thus
taking δ ↘ 0 yields Hs(A ∪B) = Hs(A) +Hs(B), as desired.

What is more is that Hausdorff measures on topological spaces are Borel regular. Indeed, for any
A ⊂ X we can take a sequence of Borel sets {Ek} defined inductively as follows. Fix δ > 0. Assuming
E1 ⊃ · · · ⊃ Ek−1 ⊃ A have been constructed, let Fk be a countable family of closed sets with diameters less
than δ covering A, such that ∑

F⊂Fk

ωs

(
diam(F )

2

)s
−Hsδ(A) 6

1

k
.

Take Ek to be the union of all the sets in Fk intersected with Ek−1. Then clearly Hsδ(Ek) −Hsδ(A) 6 1/k,
and we can take δ ↘ 0 and then k →∞ to conclude with the Borel set E ..=

⋂
iEi.

For a thorough discussion of the properties of the Hausdorff measures, see Chapter 3 of [Mag12] or
Chapter 2 of [Sim14]. We wish to isolate one important fact for the sake of culture, however; let X = Rk,
on which we consider the k-dimensional Hausdorff measure Hk. This Borel regular measure is in fact just
the k-dimensional Lebesgue measure, often denoted by Lk, and typically defined as follows: an interval
I in Rk is any set of the form

∏k
i=1(ai, bi) where −∞ < ai < bi <∞, and we define the volume of any such

set to be the product |I| ..=
∏k
i=1(bi − ai). If now A ⊂ Rk is any set, then we define the Lebesgue outer

measure of A by

|A| = Lk(A) ..= inf
F

∑
I∈F
|I|,

where the infimum is taken over all countable collections F of intervals covering A. It is more-or-less straight-
forward to show that the resulting set function is indeed an outer measure, and by applying Caratheodory’s
Criterion we find that Lk is Borel. The happy “coincidence” that Hk coincides with Lk on Rk is proven
through an interesting argument involving Vitali’s property of the Lebesgue measure (see the next section),
and the following geometric inequality proved through the process of Steiner Symmetrization :

Theorem 1.4 (Isodiametric Inequality). If E ⊂ Rk, then |E| 6 ωk
(

diam(E)
2

)k
. Thus, amongst all Euclidean

sets of a fixed diameter, balls have maximal volume.

For a proof, see Chapter 3 of [Mag12].
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Radon Measures

While Borel measures enjoy the property that Borel sets can be approximated to arbitrarily small error in
measure from the inside by compact sets, we can consider a narrower family of measures which have such
approximation properties built into their very definition. One might worry that such an imposition would
be too restrictive, but such measures, remarkably, are abundant in number. Let us now work in a Hausdorff
space X. A Radon measure on X is an outer measure µ on X such that the following three conditions
hold:

• µ is Borel regular and locally finite7;

• µ(A) = inf
U⊃A
Uopen

µ(U) for every subset A ⊂ X;

• µ(U) = sup
K⊂U

Kcompact

µ(K) for every open subset U ⊂ X.

It turns out that if X is a locally compact Hausdorff space where open sets are σ-compact, then every locally
finite Borel regular measure on X is Radon (so the first condition alone is sufficient). In particular, the
Euclidean spaces are of this form. We also note that the last condition can be greatly improved (in the fully
general case), in that U can be taken to be µ-measurable instead of just open. The definition is stated in
the way it is to highlight the interplay of µ with the topology of the space. For the detailed arguments of
these assertions, see Chapter 1 of [Sim14].

We remark that the Lebesgue measure on Rk is obviously locally finite and Borel regular, and is thus
Radon. Unfortunately, the Hausdorff measures are typically not locally finite since, for example, the lower
dimensional Hausdorff measure of a higher (Hausdorff) dimensional set is infinite. Nonetheless, it turns out
that the operation of restriction can help us out, since localizing a Borel regular measure to a set on which
the measure is locally finite results in a locally finite Borel regular measure. Thus, in Rk we can restrict
Hausdorff measures to sets on which they are locally finite to obtain Radon measures, a technique which we
use extensively in our study of rectifiable varifolds.

An additional operation on measures that will be useful is the pushforward by a map. For our uses,
we’ll consider the case of an outer measure µ on Rn and a map f : Rn → Rm, which come together to define
the outer measure f]µ on Rm by

f]µ(A) ..= µ(f−1(A)) for all A ⊂ Rm.

The following appears as Proposition 2.14 of [Mag12]:

Proposition 1.2. Let µ be a Radon measure on Rn and f : Rn → Rm be a continuous and proper map.
Then the pushforward f]µ is a Radon measure on Rm, sptf] = f(sptµ), and for every Borel g : Rm → [0,∞],∫

Rm
gdf]µ =

∫
Rn
g ◦ fdµ.

Before moving onto the next section, we remark that we can now develop the typical theory of Lebesgue
integration based off of these measures, including the typical notions of measurable functions, Lp spaces,
Sobolev spaces, et cetera. One critically important result is the following concerning the density of test
functions:

Theorem 1.5. Let X be a locally compact Hausdorff space, µ a Radon measure on X, and 1 6 p < ∞.
Then Cc(X) is dense in Lp(X).

The Riesz Representation Theorem

Besides having useful approximation properties, Radon measures appear in the following cornerstone result
of measure theory and functional analysis. We will use this theorem to help prove a central result concerning
the evolution of a varifold (thought of as a generalized C1 surface) along the flow of a vector field, which
introduces a generalized notion of mean curvature for such objects.

7An outer measure µ on a topological space X is said to be locally finite if µ(K) <∞ for all compact sets K ⊂ X.
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Theorem 1.6 (Riesz Representation Theorem). Let X be a locally compact Hausdorff space, (H, 〈−,−〉) a
finite dimensional real Hilbert space, and L : Cc(X;H)→ R a continuous linear functional in the sense that

sup{L(f) : f ∈ Cc(X;H), |f | 6 1, sptf ⊂ K} <∞

whenever K ⊂ X is compact. Then there is a Radon measure µ on X and a µ-measurable function g : X → H
with |g| = 1 µ-a.e. on X such that

L(f) =

∫
X

〈f, g〉dµ

for every f ∈ Cc(X;H). Moreover, we can characterize µ as the total variation measure |L| : P(X)→ [0,∞]
of L, which itself is defined as follows: for open sets A ⊂ X we define

|L|(A) ..= sup {L(f) : f ∈ Cc(A;H), |f | 6 1}

and for arbitrary sets E ⊂ X

|L|(E) ..= inf{|L|(A) : E ⊂ A for A open}.

The rough idea of the proof is to extend the standard Riesz Representation Theorem for Hilbert Spaces
to L1(X), associate to L a non-negative functional on Cc(X; [0,∞)), which through some analysis yields
the Radon measure µ, and then show that L defines k bounded linear operators on Cc(X) which are just
L “restricted” to the different coordinate directions. Applying Riesz’ Theorem on L1(X) to each of these
operators yields the component functions of g. For a proof, see either Chapter 4 of [Mag12] or Chapter 1 of
[Sim14].

Weak-∗ Convergence and Compactness for Radon Measures

While there exist several different notions of convergence for sequences of measures, we will be concerned
with the notion of weak-∗ convergence for defined as follows. If {µj} is a sequence of Radon measures on

Rn, then we say that µj weak-∗ converges to a measure µ, written µj
∗
⇀ µ, iff∫

Rn
fdµ = lim

j→∞

∫
Rn
fdµj for all f ∈ Cc(Rn).

The following frequently used result appears as Proposition 4.26 of [Mag12].

Proposition 1.3. Let {µj} be a sequence of Radon measures on Rn. Then the following are equivalent:

• µj
∗
⇀ µ

• If K is compact and A is open, then

• µ(K) > lim sup
j→∞

µj(K)

• µ(A) 6 lim inf
j→∞

µj(A)

• If E is a bounded Borel set with µ(∂E) = 0, then µ(E) = lim
j→∞

µj(E).

At one point in the proof of Allard’s theorem, we will be faced with a special sequence of varifolds and
will want to show that they somehow converge to another varifold. By applying the following result to their
associated Radon measures we achieve this goal.

Theorem 1.7 (Compactness for Radon Measures). Let {µj} be a sequence of Radon measures on a Rn.
Suppose that for every compact set K ⊂ Rn we have

sup
j
µj(K) <∞.

Then there exists a Radon measure µ on Rn such that, up to a subsequence, we have µj
∗
⇀ µ.
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For a detailed proof, see Theorem 4.16 in [Sim14] or Theorem 4.33 in [Mag12]. Briefly, by considering
the sequences {µj Bh} for a fixed h > 1 and applying a diagonal argument it suffices to consider the case
where supj µj(Rn) < ∞. Take a countable dense subset of Cc(Rn), and for each element f in the subset
notice that {

∫
Rn fdµj} is a bounded set of real numbers. Thus a subsequence converges to some α(f) ∈ R.

By a diagonal argument we can extract a subsequence of the measures so that
∫
Rn fdµj → α(f) for every

f . By approximating an arbitrary element f of Cc(Rn) (in the Fréchet topology) by elements of the dense
space, we can define a monotone linear functional L : Cc(Rn) → R by taking L(u) as a limit of the α(fj)
where the fj converge to f . Applying Riesz’ Theorem then provides the limit Radon measure as the Radon
measure representing L.

1.2 Covering Theorems

We collect here a few useful covering lemmas, and a good resource for such results is Section 1.5 of [EG15].
The first covering result will be used in making estimates for the proof of the Lipschitz Approximation
Theorem.

Theorem 1.8 (5r Covering Theorem). Let F be any family of closed balls in a metric space X with the
property that

sup
B∈F

diam(B) <∞.

Then there is a pairwise disjoint subfamily F ′ ⊂ F such that⋃
B∈F

B ⊂
⋃
B∈F ′

B̂,

where B̂ denotes the ball B dilated by a factor of 5 (i.e. if B = Br(x), then B̂ = B5r(x)).

Theorem 1.9 (Besicovitch Covering Theorem). For each n > 1, there is a dimensional constant k(n) such
that the following holds. Let F be a collection of closed balls in Rn, C the set of all centers of the balls in
F , and suppose that C is either bounded or that

sup
B∈F

diam(B) <∞.

Then there exist (possibly empty) subfamilies F1, . . . ,Fk(n) of F such that

• Each family Fi is pairwise disjoint and countable;

• C ⊂
⋃k(n)
i=1

⋃
B∈Fi B.

Corollary 1.1. If µ is an outer measure on Rn and F and C are as in Besicovitch’s Covering Theorem,
then there is a countable, pairwise disjoint family F ′ ⊂ F such that

µ(C) 6 k(n)
∑
B∈F ′

µ(C ∩B).

If µ is Borel, and C is µ-measurable, the we have in addition that

µ(C) 6 k(n)µ

(
C ∩

⋃
B∈F ′

B

)
.

An outer measure µ on a metric space X is said to have the Symmetric Vitali Property if, given any
A ⊂ X of finite measure and any collection F of closed balls with centers in A which forms a fine cover8

of A, then there is a countable, pairwise disjoint subcollection F ′ ⊂ F with

µ(A \
⋃
B∈F ′

B) = 0.

Theorem 1.10 (Vitali’s Property). If µ is a Radon measure on Rn, then µ has the Symmetric Vitali
Property.

8By a fine cover of A, we simply mean that for each x ∈ A we have inf{r : Br(x) ∈ F} = 0.
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1.3 The Lebesgue-Besicovitch Differentiation Theorem and Density Results

While a more general formulation of the following result exists for Borel regular measures on metric spaces,
we instead present a version for Radon measures on Rn, where we will need the theorem. For the details
of the proof of this version, see Chapter 5 of [Mag12], and for the more general version, see Chapter 1 of
[Sim14].

First, given two Radon measures µ and ν on Rn we define the upper µ density and lower µ density
of ν at a point x ∈ sptµ by the respective formulas

D+
µ ν(x) ..= lim sup

r↘0

ν(Br(x))

µ(Br(x))
, D−µ ν(x) ..= lim inf

r↘0

ν(Br(x))

µ(Br(x))
.

We have thus defined two (Borel) functions on sptµ taking values in [0,∞]. Of particular interest are those
points where both limits exist and are equal. At such points we denote the shared limit by Dµν and call it
the µ density of ν. We remark that by approximation of closed balls by open ones and vice-versa, we can
actually use either closed or open balls in the definitions of these densities.

Theorem 1.11 (Lebesgue-Besicovitch Differentiation and a Density Theorem). Let µ and ν be Radon
measures defined on Rn. Then the density Dµν is defined µ-a.e. on Rn, is Borel measurable, and has
Dµν ∈ L1

loc(Rn, µ). Moreover, there is a Radon measure νsµ ⊥ µ concentrated on the Borel set

Z = Rn \ {x ∈ sptµ : D+
µ ν(x) <∞} = (Rn \ sptµ) ∪ {x ∈ sptµ : D+

µ ν(x) =∞}

such that we have the unique decomposition

ν = (Dµν)µ+ νsµ

which is valid on M(µ).

One particular type of density that we will frequently study is the density with respect to a Hausdorff
measure. We define the upper and lower s-dimensional Hausdorff densities of a Radon measure µ on
Rn, at a point x ∈ Rn, by the respective formulas

Θ+
s µ(x) ..= lim sup

r↘0

µ(Br(x))

ωsrs
, Θ−s µ(x) ..= lim inf

r↘0

µ(Br(x))

ωsrs
.

In the event of equality, we denote the shared limit by Θsµ(x) and call it the s-dimensional Hausdorff
density of µ at x. In the proof of our primary compactness result, we’ll use these densities to show that a
certain Radon measure is rectifiable. While there are deep theorems concerning the subject of rectifiability
for measures (eg. the theorems of Marstrand and Preiss), we can make do with the following much simpler
result, which can be found as Proposition 4.17 of [Mai17].

Proposition 1.4. Let µ be a locally-finite measure on a metric space X, and suppose that there is an s > 0
such that for µ almost every x ∈ X,

0 6 Θ+
s µ(x) <∞.

Then µ = fHs for some f ∈ L1
loc(X,Hs).

Lastly, we recount the following result (Theorem 6.2 in [Mat95]), which will be used in proving a corollary
to the Monotonicity Formula.

Theorem 1.12. Let 0 6 s <∞, A ⊂ Rn, and Hs(A) <∞. Then

• 2−s 6 Θ+
s (Hs A)(x) 6 1 for Hs-a.e. x ∈ A;

• If A is Hs measurable, then Θ+
s (Hs A)(x) = 0 for Hs-a.e. x ∈ Rn \A.
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1.4 The Area Formulas

The following four results relate the Hausdorff measures to the notion of area of a graph as obtained by
integration. These tools will find frequent use in what is to come. For proofs, see any of the books on
measure theory in the references, for instance [Mag12] Chapter 8.

Theorem 1.13 (Area Formula (Take 1)). Let 1 6 n 6 m, E ⊂ Rn Lebesgue measurable, and f : E → Rm
injective and Lipschitz. Then f(E) is Hn measurable, Hn f(E) is a Radon measure, and

Hn(f(E)) =

∫
E

Jf(x)dx.

Theorem 1.14 (Change of Coordinates (Take 1)). Let 1 6 n 6 m, E ⊂ Rn Lebesgue measurable, and
suppose that f : E → Rm is injective and Lipschitz. Let g : Rm → [−∞,∞] be Borel measurable, with either
g > 0 or g ∈ L1(Rm,Hn f(E)). Then g ◦ f is Borel measurable and∫

f(E)

gdHn =

∫
E

g(f(x))Jf(x)dx

In case f is not injective, we have a generalization of the area formula, which works by taking into account
the number of times f maps over a point.

Theorem 1.15 (Area Formula (Take 2)). Let 1 6 n 6 m, E ⊂ Rn Lebesgue measurable, and suppose that
f : E → Rm is Lipschitz but not necessarily injective. Then∫

Rm
H0(f−1(y) ∩ E)dHm(y) =

∫
E

Jf(x)dx

Theorem 1.16 (Change of Coordinates (Take 2)). Let 1 6 n 6 m and suppose that f : Rn → Rm is
Lipschitz. Let g : Rn → [−∞,∞] be Borel measurable, with either g > 0 or g ∈ L1(Rn). Then

∫
Rm

 ∑
x∈f−1{y}

g(x)

dHn(y) =

∫
E

g(x)Jf(x)dx

1.5 Campanato’s Criterion

In the final step of proving Allard’s Theorem, we utilize the following condition for Hölder regularity, known
as Campanato’s Criterion. The criterion states that if a Lp function on a ball has certain integral averages
satisfying a uniform decay law, then after modification on/by measure zero sets the function is Hölder regular.
Precisely we have the following (taken from Ch. 6 of [Mag12]):

Theorem 1.17 (Campanato’s Criterion). Let n > 1, p ∈ [1,∞), and α ∈ (0, 1]. Then there exists a constant
C(n, p, α) > 0 such that the following holds. Let u ∈ Lp(B), and define for x ∈ B, r > 0

ux,r ..= −
∫
B∩Br(x)

u =
1

|B ∩Br(x)|

∫
B∩Br(x)

u

Suppose that there exists a κ > 0 such that the uniform decay condition(
1

rn

∫
B∩Br(x)

|u− ux,r|p
) 1
p

6 κrα

holds for all x ∈ B, r > 0. Then there exists a ū : B → R with ū = u a.e. on B and

|ū(x)− ū(y)| 6 C(n, p, α)κ|x− y|α

for all x, y ∈ B.
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Proof. First observe that it is possible to find a constant C(n) > 0 such that

C(n)rn 6 |B ∩Br(x)| 6 ωnrn

for all x ∈ B, r > 0. Similarly, there is a θ(n) > 0 such that if x, y ∈ B and r ..= |x− y|, then

|Br(x) ∩Br(y)| = θ(n)rn.

Let then θ′(n) 6 θ(n) be such that

θ′(n)rn 6 |Br(x) ∩Br(y) ∩B|.

We first claim that if u ∈ Lp(B), then

lim
r↓0

1

rn

∫
B∩Br(x)

|u(y)− ux,r|pdy = 0

at every Lebesgue point x of u in B (so almost everywhere). Indeed, since x ∈ B, as soon as r is small
enough we have

1

rn

∫
B∩Br(x)

|u(y)− ux,r|pdy =
ωn
|Br(x)|

∫
Br(x)

|u(y)− ux,r|pdy

6 C

(
1

|Br(x)|

∫
Br(x)

|u(y)− u(x)|pdy +
1

|Br(x)|

∫
Br(x)

|u(x)− ux,r|pdy

)

6 C

(
1

|Br(x)|

∫
Br(x)

|u(y)− u(x)|pdy + |u(x)− ux,r|p
)

= C

(
1

|Br(x)|

∫
Br(x)

|u(y)− u(x)|pdy +

∣∣∣∣∣u(x)− 1

|Br(x)|

∫
Br(x)

u

∣∣∣∣∣
p)

Thus, at every Lebesgue point of u we see that limr↓0
1
rn

∫
B∩Br(x)

|u(y)− ux,r|pdy = 0

Now, fix arbitrary radii 0 < r < R and x ∈ B. Then

C(n)rn|ux,r − ux,R|p 6 |B ∩Br(x)||ux,r − ux,R|p =

∫
B∩Br(x)

|ux,r − ux,R|pdy

6 2p−1

(∫
B∩Br(x)

|ux,r − u(y)|pdy +

∫
B∩Br(x)

|u(y)− ux,R|pdy

)

which implies that, by our main assumption and the fact that r < R,

|ux,r − ux,R| 6 C(n, p)

(
1

rn

∫
B∩Br(x)

|ux,r − u(y)|pdy +
1

rn

∫
B∩Br(x)

|u(y)− ux,R|pdy

)1/p

6 C(n, p)

(
1

rn

∫
B∩Br(x)

|ux,r − u(y)|pdy +

(
R

r

)n
1

Rn

∫
B∩BR(x)

|u(y)− ux,R|pdy

)1/p

6 C(n, p)

(
κprαp +

(
R

r

)n
κpRαp

)1/p

6 C(n, p)κ

(
R

r

)n
p

Rα
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We reiterate that this estimate holds for all x ∈ B and for all radii 0 < r < R.
Now let rk = 2−kr. Iterating the above argument yields for every k > h > 0 and x ∈ B

|ux,rk − ux,rh | 6
k−1∑
j=h

|ux,rj+1 − ux,rj | 6 C(n, p)κrα
k−1∑
j=h

2−jα. (\)

Take h = 0 and send k to infinity at every Lebesgue point x of u to find that

|u(x)− ux,r| 6 C(n, p, α)κrα.

Let x, y ∈ B, r ..= |x− y|, and recall that by our choice of θ′(n) > 0 that

θ′(n)rn|ux,r − uy,r|p 6 2p−1

(∫
B∩Br(x)

|u(z)− ux,r|pdz +

∫
B∩Br(y)

|u(z)− uy,r|pdz

)
which implies by our main assumption that

|ux,r − uy,r| 6 C(n, p)

(
1

rn

∫
B∩Br(x)

|u(z)− ux,r|pdz +
1

rn

∫
B∩Br(y)

|u(z)− uy,r|pdz

)1/p

6 C(n, p)κrα

= C(n, p)κ|x− y|α (b)

Putting our estimates together we find that if x, y ∈ B are Lebesgue points of u, then

|u(x)− u(y)| 6 |u(x)− ux,r|+ |ux,r − uy,r|+ |uy,r − u(y)| 6 C(n, p, α)κ|x− y|α (h)

Now, (\) tells us that the sequence of functions {u·,rk}k is Cauchy with respect to uniform convergence
on B. From (b), we see that the u·,rk are all continuous, so by completeness there is a continuous ū : B → R
such that u·,rk → ū uniformly on B. We also have that ux,rk → u(x) at every Lebesgue point x of u, and so
at all such points we see that u(x) = ū(x). From (h), if x, y are Lebesgue points of u,

|ū(x)− ū(y)| 6 C(n, p, α)κ|x− y|α.

By continuity of ū, we conclude the same estimate for all x, y ∈ B. Thus, ū ∈ C0,α(B) and ū = u a.e. on B
(at all Lebesgue points of u).

1.6 Sobolev Inequalities and Embeddings

During the proof of Allard’s Theorem we will construct a harmonic approximation to a Lipschitz graph. To
prove the existence of such an approximation, and to obtain an important estimate from it, we will have to
utilize two fundamental results from the theory of Sobolev spaces. We collect them here for reference, and
refer the reader to any text on functional analysis for the details.

Theorem 1.18 (Rellich-Kondrachov Compactness Theorem). Let Ω ⊂ Rn be a bounded domain, 1 6 p <∞,
and j > 0, m > 1 integers. Then W j+m,p

0 (Ω) is compactly embedded in W j,q(Ω) for every 1 6 q < dp
d−mp if

mp 6 d, and in Cj(Ω) if mp > d.
If Ω happens to have a bounded extension operator E : Wm,p(Ω) → Wm,p(Ω̃) for some bounded open

Ω̃ ⊃⊃ Ω (such as when Ω is Lipschitz), then the same result holds when Wm,p
0 (Ω) is replaced with Wm,p(Ω).

Starting from here and the Banach-Alaoglu Theorem, we can readily prove the following by contradiction.

Proposition 1.5 (Poincaré Inequality). Let Ω ⊂ Rn be a bounded and connected Lipschitz domain. Then
there is a constant C = C(n,Ω) > 0 such that

‖u‖L2(Ω) 6 C‖∇u‖L2(Ω)

for all functions u in the Sobolev space H1(Ω) with
∫

Ω
u = 0.
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1.7 Results Concerning Harmonic Functions

As we will see, we can approximate a rectifiable varifold with small curvature by a Lipschitz graph, essentially
by using nothing more than a monotonicity formula. This is itself proven by testing the first variation with
nice vector fields. Thus, if we were only seeking C0,1 regularity, we could get by with only these results
(indeed from the Lipschitz Approximation we could jump directly to Step 3 of the main proof and conclude).
However, the higher regularity result we seek actually comes from an improved approximation involving
harmonic functions, which have decay properties that we can then pull back to the varifold using a “Tilt-
Excess Inequality.” This is a version of Caccioppoli’s Inequality for varifolds, the standard version of
which we recount below along with several other central results to the general theory of harmonic functions.

Proposition 1.6 (Mean Value Property). Let Ω ⊂ Rn be open, and suppose that u ∈ C2(Ω) satisfies ∆u = 0
on Ω. Then for any ball Br(x0) compactly contained in Ω, we have that

u(x0) = −
∫

Ω

udx = −
∫
∂Ω

udσ.

See Theorem 2.1 in [GT01].
Conversely, we have the following result. Thus, we see that the mean value property provides a charac-

terization of harmonic functions.

Proposition 1.7. Let Ω ⊂ Rn be open, and suppose that u ∈ C(Ω) satisfies the mean value property

u(x0) = −
∫
∂Ω

udσ

for every ball Br(x0) compactly contained in Ω. Then u is harmonic on Ω.

See Theorem 2.7 in [GT01].

Theorem 1.19 (Harmonic Gradient Estimate). Let Ω ⊂ Rn be open, and Br(x0) ⊂ Ω. Then given k > 0
there exists a constant Ck > 0 such that for each multi-index α of size k,

|Dαu(x0)| 6 Ck
rn+k

‖u‖L1(Br(x0)).

See Chapter 2, Theorem 7 in [Eva10].

Lemma 1.1 (Weyl). Let Ω ⊂ Rn be open. A function u ∈ L1
loc(Ω) is harmonic iff∫

Ω

u∆φ = 0 ∀φ ∈ C∞c (Ω)

See Lemma 1.16 in [GM05].

Theorem 1.20 (Caccioppoli Inequality). Let Ω ⊂ Rn be a domain, and suppose that u ∈ H1(Ω) is a weak
solution of ∆u = 0: ∫

Ω

DαuDαφ = 0 ∀φ ∈ H1
0 (Ω).

Then for each x0 ∈ Ω and choice of 0 < ρ < R 6 dist(x0, ∂Ω) we have that∫
Bρ(x0)

|Du|2 6 c

(R− ρ)2

∫
BR(x0)\Bρ(x0)

|u− λ|2 ∀λ ∈ R.

See Theorem 4.1 of [GM05].
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1.8 Rectifiable Sets

Rectifiable sets are the measure theoretic analogues of differentiable manifolds, and are the worlds upon
which much of what is to follow lives. To pose our first definition, let M ⊂ Rn be a Hk measurable set
(with k 6 n). We say that M is countably Hk rectifiable if there exist countably many Lipschitz maps
fj : Rk → Rn and a Hk-null set M0 ⊂ Rn such that M ⊂ M0 ∪

⋃
j fj(Rk). Notice how the Lipschitz maps

play a role analogous to that of parameterizations in smooth differential geometry, and that their coverage
of M is allowed to be good up to a Hk measure 0 set. We say that M is locally Hk-rectifiable provided it
is countably Hk-rectifiable and Hk(K ∩M) <∞ for all compact K ⊂ Rn. Finally, should it occur for such
an M that Hk(M) <∞, then we simply say that M is Hk-rectifiable.

By Whitney’s Approximation Theorem (see [EG15] Theorem 6.10) and the C1 Approximation Theorem
to Lipschitz functions (ibid. Theorem 6.11) it follows that a set M ⊂ Rn is countably Hk rectifiable iff
there exist countably many k-dimensional embedded C1 manifolds Nj of Rn and a Hk-null set N0 such that
M ⊂ N0∪

⋃
j Nj . Starting from this, it follows that we can realize a countably Hk rectifiable set as countable

disjoint union of Hk-measurable sets, one of which is measure zero, and the others of which are contained in
k-dimensional C1 manifolds embedded in Rn.

One of the most important differential geometric properties which carries over largely intact to rectifiable
sets is the existence of tangent spaces. To state what this means (more generally) in a measure theoretic
context, we first define the k-dimensional blowup of a Radon measure µ on Rn at the point x and at scale
r > 0 by

µx,r(E) ..=
1

rk
µ(x+ rE).

We can alternatively notate this as the pushforward 1
rk

(Φx,r)]µ where Φx,r : Rn → Rn is defined by Φx,r(y) ..=
(y − x)/r, which has the added benefit of making obvious the fact that µx,r is Radon. In the event that
there exists a k-dimensional plane πx and a θ(x) ∈ R such that as r ↘ 0 these blow ups weak-∗ converge to
θ(x)Hk πx, then we write Txµ ..= πx and call it the approximate tangent space to µ at x with multiplicity
θ(x). We’ll be primarily concerned with Radon measures occurring as the restriction of Hausdorff measures
to locally Hk rectifiable sets, so let us now discuss such measures. The following appears as Theorems 10.2
and 10.8 in [Mag12]:

Theorem 1.21. Let M ⊂ Rn be a locally Hk-rectifiable set. Then for Hk-a.e. x ∈M there exists a unique
k-dimensional plane πx such that as r ↘ 0,

(Hk M)x,r = Hk
(
M − x
r

)
∗
⇀ Hk πx.

Additionally, the k-dimensional Hausdorff density Θk(Hk M) = 1 Hk-a.e. on M .
Conversely, if µ is a Radon measure on Rn, concentrated on a Borel set M ⊂ Rn, and for every x ∈M

there exists a k-dimensional plane πx so that as r ↘ 0 the blowups µx,r weak-∗ converge to Hk πx, then
µ ≡ Hk M and M is locally Hk-rectifiable.

The more suggestive notation TxM ..= πx is used for the approximate tangent spaces in this context,
and heuristically the forwards direction of the theorem can be shown by observing that if M = f(E) is a
Lipschitz image of f : Rk → Rn, then for Lk-a.e. x ∈ E we have that Tf(x)M = Dfx(Rk). Here we use
the crucially important result (known as Rademacher’s Theorem) that Lipschitz functions on Rn are
classically differentiable almost everywhere. Once we have this, it is only a matter of figuring out how to
modify our rectifiable set by sets of measure zero to obtain a nicer object on which we can apply this result.
The reverse direction is more interesting, and involves the following auxiliary result for rectifiability (see
Proposition 10.9 of [Mag12]). Here the set K(π, t) ⊂ Rn, for a k-dimensional plane π and t > 0 denotes the
cone {y ∈ Rn : |P⊥π y| < t|Pπy|} = {y ∈ Rn : |y| <

√
1 + t2|Pπy|}.

Proposition 1.8. If M ⊂ Rn is compact, π is a k-dimensional plane, and there exist δ, t > 0 such that for
all x ∈M

M ∩Bδ(x) ⊂ x+K(π, t),

then M is Hk-rectifiable.
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So, intuitively, a set is locally Hk-rectifiable provided that there is a cone so that by sliding the point of the
cone around the set, some uniform amount of the set is always contained in the translated cone.

Therefore, we see that in some sense Hk-rectifiability is characterized by the almost everywhere existence
of approximate tangent spaces. By a Hausdorff density argument (see Proposition 10.5 of [Mag12]), we can
also show that if M1,M2 ⊂ Rn are two locally Hk rectifiable sets, then for Hk-a.e. x ∈ M1 ∩M2 we have
TxM1 = TxM2. This observation will be frequently useful in relating the tangent planes to our varfiold to
the tangent planes of an approximation.

Before moving onto an earnest definition of varifold, we recount another fact which will be helpful in
effectively wielding the monotonicity formula. The following density result for Hk-measurable sets with
multiplicity is adapted from Remark 1.8(2) in [Sim14]:

Proposition 1.9. Let M be a Hk-measurable subset of Rn, and θ : M → R a positive locally Hk M -
integrable function. Then

lim
r↘0

1

ωkrk

∫
M∩Br(x)

θdHk = θ(x)

wherever Hk M has an approximate tangent space with multiplicity θ(x).

Notice that this really does follow immediately from the definition of the approximate tangent space with
multiplicity. Indeed, writing out the weak-∗ definition for the approximate tangent space TxM to M at x
with positive, locally Hk M integrable multiplicity θ, we have for all φ ∈ Cc(Rn) that

lim
r↘0

∫
Φx,r(M)

f(y)θ(x+ λy)dHk(y) = θ(x)

∫
TxM

fdHk.

Testing with f ∈ Cc(Rn) with χB1(0) 6 f 6 χB1+ε(0) for ε > 0 leads us directly to the proposition.

1.9 Rectifiable Varifolds

In full generality, a k-dimensional varifold in an open set U ⊂ Rn is any Radon measure on the space
U ×Gk(Rn), where Gk(Rn) is the k-Grassmanian over Rn with its standard smooth manifold structure and
topology. For our purposes, it suffices to consider a more easily visualizable realization. Our central objects
of study are the rectifiable varifolds, which intuitively are generalized C1-manifolds together with a notion
of multiplicity. Precisely, let U ⊂ Rn be an open set. A k-dimensional rectifiable varifold in U is a pair
V = (Γ, θ), where Γ is a countably Hk-rectifiable set in U , and θ is a positive, Borel measurable, locally Hk
integrable function supported on Γ, called the multiplicity of the varifold. The magic of these objects comes
from the following construction, which associates to V a natural measure µV ..= θHk Γ called the mass
measure of V . Its action on Hk measurable sets E ⊂ Rn is given explicitly by

µV (A) ..=

∫
Γ∩A

θdHk.

Notice that as defined, µV is always a Borel measure, and that it is Radon if Γ is locally Hk-rectifiable. We
also denote by M(V ) ..= µV (U) the mass of V and from here onward we assume that this mass is finite.

At this point it is worth pausing for a moment to consider what these new constructions do for us on an
intuitive level. Suppose that we are in a situation requiring us to take a “limit” of surfaces. For instance,
we may be trying to minimize a functional acting on surfaces, and have in our hands an infimizing sequence
from which we hope to extract a converging subsequence. If we start with classical C1 surfaces we quickly
realize that any reasonable class of limiting objects must be somewhat more general than just C1 surfaces.
Smooth objects might converge to objects with cusps or crinkles, and they might collapse in certain ways.
An illustrative example comes from rescalings of the catenoid in R3. As we “zoom out” from the origin,
we both see the upper and lower branches of the catenoid flattening onto the xy-plane, while the neck of
the catenoid pinches down to the origin. Thus, the limit of these rescaled catenoids ought to converge to
something that not only has a point missing from it, but also has multiplicity two! Indeed, the class of
rectifiable varifolds captures these sorts of phenomena. Associating to each catenoid its mass measure, it
can be easily shown that these measures weak-∗ converge to 2H2 π, where π is the xy-plane. Thus, by
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expanding our admissible notions of “surface” to rectifiable varifolds, we can concoct notions of convergence
and limit for which such problems have a hope of solution.

Yet another motivating reason for the consideration of rectifiable varfiolds for use in geometric variational
problems is garnering the continuity of important functionals. A perennial favorite result is the following:
Consider a sequence of circles in R2 of unit radius, and whose centers are the points (0, 1

k ). Now take
the union of each such circle with the unit circle centered at the origin. This sequence of two dimensional
rectifiable varifolds converges to the unit circle centered at the origin as k →∞, but consider what happens
with the length of these varfiolds in the limit. Each individual varifold has length 4π, but the limit has
length 2π! Thus, unless we consider the limiting unit circle with multiplicity 2 (which is of course completely
consistent with intuition), we have “lost mass.”

For a brief introduction to the idea of general varifolds, see [Men17].

1.10 Miscellaneous Results in Linear Algebra and Real Analysis

Lastly, we collect together a small potpourri of various results which will help us along the way.

Proposition 1.10 (Hadamard’s Inequality). Let v1, . . . , vn be vectors in Rn forming the columns of a matrix
A ..= (v1| · · · |vn). Then

|det(A)| 6
n∏
i=1

|vi|.

We’ll use this result in the proof of the Excess Decay Theorem to make an estimate on the size of a
Jacobian. The next result, whose proof can be found in Chapter 17 of [Mag12].

Proposition 1.11 (Taylor Expansion of the Determinant). Let A ∈ Rn ⊗ Rn and I = IdRn . Then for
sufficiently small t > 0,

• (I + tA)−1 = I − tA+ t2A2 +O(t3)

• det(I + tA) = 1 + t trace(A) + t2

2

(
trace(A)2 − trace(A2)

)
+O(t3)

Recall that for a square matrix A we define its adjugate, Adj(A), by the relation

AAdj(A) = det(A)I.

In particular, Adj(A) is the transpose of the cofactor matrix of A, and the formula is satisfied by the Laplace
Expansion for the determinant. Moreover, if A is invertible then we can immediately write A−1 in terms of
its adjugate as A−1 = 1

detAAdj(A). Part of the importance of the adjugate comes from its appearance in
the following formula, which we will utilize in studying the first variation of a varifold:

Proposition 1.12 (Jacobi’s Formula). Let A : R → Rn ⊗ Rn be differentiable (here we identify Rn ⊗ Rn
with n× n real matrices). Then detA is differentiable, and

d

dt
det(A(t)) = trace

(
Adj(A(t))

d

dt
A(t)

)
.

Lastly, we have the following technical lemma, which will be used in the proof of the Excess Decay
Theorem to establish the so-called “Height Estimate.” In particular, it will allow us to relate the deviation
of the tangent plane to a graph relative to the plane it sits over to the derivatives of the graph at the base
point of the tangent plane.

Lemma 1.2 (Tilting Subspace Lemma). Let A be a k−dimensional subspace of RN with ON basis {ξi},
completed to an ON basis {ξ1, . . . , ξk, e1, . . . , eN−k} of RN . Let v1, . . . , vN−k be vectors in RN , and define
the tilted plane

B ..= {y + L(y) : y ∈ A}

where L : A→ RN is defined by L(y) =
∑N−k
j=1 (vj · y)ej. Then for a dimensional constant C we have

‖PA − PB‖ 6 C
N−k∑
j=1

|vj |.
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Proof. Let T ..= PA − PB and K =
∑
|vj |. We must show that |Tx| 6 CK|x| for all x ∈ RN . It suffices

to show this boundedness on A and A⊥ separately, since every x ∈ RN decomposes uniquely in the form
x = x> + x⊥ for x> ∈ A and x⊥ ∈ A⊥, allowing us to estimate

|Tx| 6 |Tx>|+ |Tx⊥| 6 CK(|x>|+ |x⊥|) 6 CK|x|

where the last inequality is due to the equivalence of the `1 and `2 norms on R2.
So, first let x ∈ A. Then |Tx| = |x−PBx| 6 |x− y| = |x− z−L(z)| for every y ∈ B, where y = z+L(z)

for some z ∈ A, by the properties of orthogonal projections. Take z = x to find that by Cauchy Schwarz

|Tx| 6 |L(x)| 6 CK|x|.

On the other hand let x ∈ A⊥ \ {0}. Then we have for some y ∈ A \ {0}

|Tx|2 = |PBx|2 = PBx · PBx =
(PBx · PBx)2

|PBx|2
=

(x · PBx)2

|PBx|2
=

(x · (y + L(y)))2

|y + L(y)|2
=

(x · L(y))2

|y|2 + |L(y)|2

6 |x|2 |L(y)|2

|y|2 + |L(y)|2

= |x|2 |L(ŷ)|2

1 + |L(ŷ)|2

6 |x|2|L(ŷ)|2

6 (CK|x|)2

where we have written ŷ = y/|y| and used the previous result.

Finally, we define some notation and conventions which will be used throughout the paper: We will
frequently write integrals of a function over all of a set while the function may only be defined almost
everywhere on that set. For the sake of maintaining some semblance of manageable notation we tacitly
assume that whenever this occurs we have accordingly made modifications on measure zero sets so that
everything is well-defined. We also freely move between the notations (x, y) and x + y for vectors in the
direct sum of two subspaces of Rn, based on whichever is most natural for the purposes of notation. | − |
will denote the standard Euclidean norm on Rn coming from the standard inner product denoted with a ·,
and ‖ − ‖ will denote some other operator norm. Since we will be working over finite dimensional spaces,
the exact norm will seldom be important, but we’ll work with particular ones when it is more convenient to
do so. In particular, we will frequently use the norm induced by the Frobenius inner product 〈− : −〉 on
real n × n matrices 9 by 〈A : B〉 ..= trace(A∗B) where −∗ denotes the adjoint. We remark that for simple
tensors u ⊗ v ∈ Rn ⊗ Rn acting by (u ⊗ v)x = (v · x)u for x ∈ Rn, we have trace(u ⊗ v) = u · v. Thus if
a, b, u, v ∈ Rn then 〈a ⊗ b : u ⊗ v〉 = (a · c)(b · d). Lastly, we state once and for all that all varifolds having
Γ ⊂ U are (without loss of generality—see the technical remark at the end of Section 2) assumed to have
Γ ∩ U = Γ.

2 Allard-Type Regularity Theorems for Rectifiable Varifolds

While this note will focus on the proof of one particular version of the regularity theorem, we wish to give not
just an intuition for why the result should be true, but also an idea of what can actually be said regarding
the subject, and where such results can take us. As we will see in the first section of the next part, a
rectifiable varifold has a notion of generalized mean curvature. For the purposes of studying problems such
as the famous Plateau Problem, we would be concerned with varifolds whose generalized mean curvature
vanishes, analogously to what happens with classical minimal surfaces. The version of the theorem that we
will explore is strong enough to handle such problems, since it assumes boundedness of the mean curvature.
Nonetheless, better results are still obtainable. We can replace the L∞ control on the mean curvature with

9Note that for operators defined on infinite dimensional spaces this inner product is more commonly known as the Hilbert-
Schmidt inner product.
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a suitable amount of integrability, and we can also remove a technical assumption relating to the oscillation
of tangent planes to the varifold. A more recent result does even better, and asks not for control on the
mean curvature but on a certain level of regularity of a generalized normal to the varifold. Moreover, the
main theorem here will be stated for the class of integer rectifiable varifolds, but the later two results apply
more generally to the class of rectifiable varifolds.

Here comes the main theorem that we will explore. Proper definitions of all the various quantities will be
given soon, but for now it suffices to think of the generalized mean curvature H as a second order notion of
curvature to the varifold, and the excess E(V, π, x0, r) as an L2 measure of the oscillation of tangent planes
to the varifold around a given point and at a certain scale. Thus, a control on these quantities is somehow
a control on how much the varifold is allowed to wiggle around and be irregular.

Theorem 2.1 (Allard (Take 1)). Let k < N be a positive integer. Then there are positive constants ε, α, γ
such that the following holds. Let V = (Γ, θ) be a k-dimensional integer rectifiable varifold with bounded
generalized mean curvature H supported in the ball Br(x0), x0 ∈ sptµV , such that

(A1) µV (Br(x0)) < (ωk + ε)rk and ‖H‖∞ < εr−1.

(A2) There is a k-dimensional plane π such that E(V, π, x0, r) < ε.

Then Bγr(x0) ∩ Γ is a C1,α submanifold of Bγr(x0) without boundary. Moreover, θ ≡ 1 on Bγr(x0) ∩ Γ.

Indeed the conditions (A1) and (A2) loosely tell us that, in comparison with a flat plane, the varfiold does
not fold up too much, is not too wavy, and does not bend too tightly. If these sound somewhat redundant, it
is because they are–we can remove the control on the excess by interpolating its smallness from the control
on the mass of the varifold and the size of its mean curvature. In any case, if these quantities are all small
it seems reasonable that some regularity might be lurking around. In fact, all of the arguments that we
will make rely on the intuition that because these quantities are small, there should be nicer surfaces living
nearby to the varifold which approximate it well. We begin by proving the Monotonicity Formula 3.1, which
not only paves the way for many estimates concerning the growth of the area of the varifold and also provides
regularity for the multiplicity function, but also tells us that in the regime of vanishing mean curvature, the
area growth of an integral varifold is consistent with the bending experienced by classical minimal surfaces.

Next, we prove the Tilt-Excess Inequality 3.4, which can be thought of as a Caccioppoli inequality for
varifolds. Loosely, it allows us to control the excess of the varifold after zooming into a smaller scale through
the L2-norm of a suitable Lipschitz approximation to the varifold. Up next and at the core of the proof are
two results, the first of which is the Lipschitz Approximation Theorem 3.2. The Theorem says that when
Allard’s conditions are in force for a varifold with sufficiently small parameter ε, then a sizable portion of
the varifold is covered by the graph of a Lipschitz function. Because the varifold has small mean curvature,
the Lipschitz approximation ought to be “close” to being a minimal graph solving the Minimal Surface
Equation. Since this equation is loosely a perturbation of the Laplace Equation, we are led to look for
a graphical approximation to this Lipschitz approximation whose components are harmonic. This is the
content of the Harmonic Approximation Lemma 3.5.

Using the growth properties of harmonic functions, we can then prove the Excess Decay Theorem 3.3,
which says that if we start with a varifold satisfying Allard’s conditions, then by zooming in a little and
tilting our view the excess (which, again, is a measure of the oscillation of tangent planes to the varifold)
decreases by at least a factor of 2. From here, we begin the proof of the main theorem, which happens in
four parts. We use the Excess Decay Theorem to prove that when we “blow up” the varifold at a point by
zooming into it, the excess must decrease to zero at a given rate. This allows us to then utilize the Lipschitz
Approximation Theorem, as well as prove that a sizable portion of the varifold is actually covered by the
Lipschitz graph. The third part of the proof consists of showing that on a smaller scale, the varifold actually
coincides with the Lipshitz graph, and the final part uses the power law decay to prove that the conditions
of Campanato’s Criterion 1.17 are satisfied, completing the proof.

As we mentioned earlier, one of the assumptions in the statement above is redundant. Indeed, assumption
(A2) can be proven as a consequence of the bounds in assumption (A1). The intuition for why this should
be true is that the area bound is a zeroth order notion of curvature, and the mean curvature a second order
notion of curvature. Since the excess deals with the oscillation of tangent planes, this should be a first order
notion of curvature and we might hope to interpolate its smallness from the smallness of these lower and
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higher order quantities. Notice also that we also can relax the L∞ control of the mean curvature to having
integrability in Lp for p > k with k the dimension of the varifold, and that we have an explicit (and in fact
sharper) value of α in the C1,α regularity conclusion. The following formulation of Allard’s ε-Regularity
Theorem for such varifolds appears as Theorem 5.2 in the text of [Sim14].

Theorem 2.2 (Allard (Take 2)). Let k < N be a positive integer, and p > k. Then there are positive
constants ε, γ such that the following holds. Let V = (Γ, θ) be a k-dimensional rectifiable varifold with
generalized mean curvature H supported in the ball Br(x0), x0 ∈ sptµV , such that

(A’1) θ > 1 for µV -a.e. x ∈ Γ.

(A’2) µV (Br(x0)) < (ωk + ε)rk and
(

1
rk−p

∫
Br(x0)

|H|pdµV
)1/p

6 ε.

Then there is a k-dimensional subspace π and a map f ∈ C1,1−k/p(Bγr(x0) ∩ π;π⊥) with Df(x0) = 0,
Γ ∩Bγr(x0) = Γf ∩Bγr(x0), and moreover

1

r
sup |f |+ sup |Df |+ r1−k/p sup

x,y∈Bγr(x0)
x 6=y

|Df(x)−Df(y)|
|x− y|1−k/p

6 Cε1/(2k+2)

where C = C(k,N, p).

In 2013 Bourni and Volkmann proved (in [BV16]) the following generalization of Allard’s theorem, which
dispenses with the assumed estimates on the generalized mean curvature, instead asking only for Hölder
regularity of the generalized normal vector to the varifold. Before stating their theorem, we define this
notion of Hölder regularity. In the definition, the object δV is the first variation of the varifold, a construct
that we will meet in the next section. Heuristically, the first variation is a linear map of C1

c vector fields,
and is defined to be the initial rate of change of area that the varifold experiences when being moved by the
flow of such a vector field.

Definition 2.1 (Generalized C0,α Normal). Let U ⊂ Rn be open, and V = (Γ, θ) a k-dimensional rectifiable
varifold in U . Then V is said to have generalized normal of class C0,α in U if there is a constant K > 0
such that for all Br(x) ⊂ U and all X ∈ C1

c (Br(x);RN ),

δV (X) 6 Krα
∫
U

‖dTxΓX‖dµV (x),

where dπX ..= DX ◦ Pπ for Pπ the orthogonal projection onto a k-dimensional subspace π.

Theorem 2.3 (Bourni and Volkmann). Let k < N be a positive integer. Then there are positive constants
ε, γ such that the following holds. Let V = (Γ, θ) be a k-dimensional rectifiable varifold supported in the ball
Br(x0), x0 ∈ sptµV , such that

(A”1) θ > 1 for µV -a.e. x ∈ Γ.

(A”2) µV (Br(x0)) < (ωk + ε)rk and V has generalized C0,α normal with Krα 6 ε.

Then there is a k-dimensional subspace π and a map f ∈ C1,1−n/p(Bγr(x0) ∩ π;π⊥) with Γ ∩ Bγr(x0) =
Γf ∩Bγr(x0).

The proof idea here is similar in spirit to the proof we’ll give for the first version of the theorem. A
new version of the Monotonicity Formula is proven, and from this corresponding versions of the Lipschitz
Approximation Theorem and Excess Decay Theorem are established. Then, the proof follows just as in the
case we consider. That the C0,α normal condition really does generalize the mean curvature condition is
shown along with the proof of the main theorem in Bourni and Volkmann’s Paper [BV16].

Once we have such a result, what can be done with it? One important direction is in building the regularity
theory for mass-minimizing integral currents in the effort of studying solutions the Plateau Problem. For
a treatment of this topic, see [Sim14] Chapter 7, or [Lel16]. A more immediately accessible result is the
following one (appearing as Corollary 3.3 in [Lel18]). Here we use results to be proven in the next section.
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Theorem 2.4. Let α be as in Allard’s Theorem (Take 1), and let V = (Γ, θ) be a k-dimensional integer
rectifiable varifold in the open set U ⊂ RN . Then there is an open set W ⊂ U such that W ∩ Γ is a C1,α

submanifold of W without boundary. Moreover, W ∩ Γ is dense in Γ. If in addition θ is constant µV -a.e.
then µV (Γ \W ) = 0.

Proof. The second conclusion is relatively easy to get. Without loss of generality, we can assume that θ ≡ 1
µV -a.e. on Γ. Then for µV -a.e x0 ∈ Γ, we have by Corollary 3.1 that

1 = θ(x0) = lim
r↘0

µV (Br(x0))

ωkrk
.

Moreover, the map x 7→ ‖TxΓ− Tx0Γ‖2 is an L1
loc function on Γ by virtue of V being of finite mass, and its

value at x = 0 is 0. By the Lebesgue Points Theorem, we thus have at µV -a.e x0 ∈ Γ that

lim
r↘0

1

rk

∫
Br(x0)

‖TxΓ− Tx0
Γ‖2dµV (x) = 0.

Thus, at every such x0 there is a corresponding rx0
> 0 such that (A1), (A2) hold on Brx0 (x0) and with

π = Tx0
Γ. Thus by Allard’s Theorem we conclude that Bγrx0 (x0) ∩ Γ is a C1,α submanifold of Bγrx0 (x0)

without boundary. We take W to be the union of all such open balls for each such x0. Notice that if Γ has
no isolated points, then it is guaranteed that Γ ⊂W .

The proof of the first conclusion is topological. Recall the standing assumption that Γ ∩ U = Γ, and
consider Γ and its closure Γ̄ as metric subspaces of RN with its standard metric. Then Γ is in fact an open
subset of Γ, which is itself a complete metric space. Thus, Γ is a Baire space, which is the crux of the proof
to follow. As we will see in the next section, the multiplicity θ is upper semicontinuous, and so the sets
Ck ..= {θ > k} are closed in Γ (and relatively closed in Γ) for each k > 1. For each such k, let Dk be the
interior of Ck in the topology of Γ and set Ek ..= Dk \ Ck+1, E ..= ∪k>1Ek.

Fix now any x ∈ Γ \ E, and let k > 1 be such that θ(x) ∈ [k, k + 1). Note this means that x ∈ Ck.
By the upper semi-continuity of θ in some neighborhood of x we have 1 6 θ < k + 1. If x ∈ Dk = intCk,
then we reach the contradiction that x ∈ Ek = Dk \ Ck+1, since there would exist a neighborhood where
k 6 θ < k + 1. Thus, x ∈ Ck \Dk, and altogether we have proven that Γ \ E ⊂ ∪kCk \Dk. But Ck \Dk is
nowhere dense, so by the Baire Category Theorem we discover that E is a dense open set.

Let for each k > 1 Uk ⊂ RN be an open set such that Uk ∩ Γ = Ek, and focus attention on each of
the integral varifolds Vk ..= (Γ ∩ Uk, θ �Uk). Since these varifolds all have bounded mean curvature in their
respective Uk, and have multiplicities θ �Uk= k µVi-a.e. in Uk, by the first conclusion of the theorem there is an
open set Wk ⊂ Uk so that Γ∩Wk is a C1,α submanifold of Wk without boundary, with µVk(Γ∩(Uk\Wk)) = 0.
But then Γ ∩Wk is dense in Γ ∩ Uk = Ek. Set W = ∪kWk and conclude that Γ ∩W is a C1,α submanifold
of W without boundary with Γ ∩W dense in E, which is itself dense in Γ.

We make a technical remark on the hypotheses of the theorem above. The standing assumption that
Γ ∩ U = Γ is not exactly without cost in generality. Indeed, we can impose this condition on a varifold
by modifying Γ, but this runs the risk of introducing non-integral values of the multiplicity via a density
argument in Corollary 3.1 (e.g., consider the perils of adding a boundary point to an open half plane).
In particular, under the assumption of bounded mean curvature, by this same corollary we have that the
multiplicity of the varifold and the density agree almost everywhere, so that we might as well work with
the density as it has more mathematical structure behind it. This is, of course, at the cost of not being
everywhere integer valued. To circumvent this technicality, we really ought to add the hypothesis that the
density is everywhere integer valued to the above theorem.

3 Allard’s Regularity Theorem for Integer Rectifiable Varifolds
with L∞ Mean Curvature

3.1 Integer Rectifiable Varifolds and the First Variation

In the introduction we briefly considered the idea of rectifiable varifolds. In this section, we specialize to a
subclass called the integer rectifiable varifolds, which are simply rectifiable varifolds whose multiplicities are
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positive integer valued (almost everywhere). We study here a construction which brings functional analytic
tools to the study of these varifolds, and allows us to view our integral varifolds as objects acting on test
vector fields. We thereby uncover a connection between these new objects and classical smooth manifolds
through the notion of generalized mean curvature.

To begin, let Φ: U → W be a smooth diffeomorphism of open sets U and W in RN , and let V = (Γ, θ)
be a k-dimensional integral varifold in U . We define the pushforward of V to be the k-dimensional integral
varifold Φ#(V ) in W given by

Φ#(V ) = (Φ(Γ), f ◦ Φ−1)

The pushforward is still k-dimensional as Γ is covered by a countable union of k-dimensional C1 submanifolds
of RN , which are themselves pushed forward to other C1 submanifolds of RN , and since the Borel measura-
bility of f ◦ Φ−1 is obvious. Now, for a vector field X ∈ C1

c (U ;RN ) we obtain a global flow Φ: R× U → U
which is the unique solution of the system

∂
∂tΦ(t, x) = X(Φ(t, x))

Φ(0, x) = IdU (x) = x

From the global flow Φ we obtain the one parameter family of flow maps Φt : U → U sending x 7→ Φ(t, x)
for each x ∈ U .

Definition 3.1 (The First Variation). If V = (Γ, θ) is an integral varifold in the open set U ⊂ RN , and
X ∈ C1

c (U ;RN ) generates the flow maps Φt : U → U , then the first variation of V on X is defined by

δV (X) ..=
d

dt

∣∣∣∣
t=0

M((Φt)#(V ))

Unfortunately, as defined the first variation is not very easy to work with (in fact we don’t even know
that it is well-defined to begin with!). Fortunately, we have the following characterization in terms of the
tangential divergence of X along tangent planes. We define this notion of divergence as follows: let π be a
k-dimensional subspace of RN with any choice of ON basis {e1, . . . , ek}, and set

divπX ..=

k∑
j=1

ej ·DejX ∀X ∈ C1(U ;RN )

where Dej is the directional derivative of X in the direction of ej .

Lemma 3.1. With π a k-dimensional subspace of RN and X ∈ C1(U ;RN ), we have

divπX = div(PπX).

Proof. Let {ξi}ki=1 be an ON base of π, completed to an ON base of RN . If X = Xiξi, then PπX =
∑k
i=1X

iξi
and

divπX =

k∑
i=1

ξi ·DξiX =

k∑
i=1

(ξi · ξj)DξiX
j =

k∑
j=1

DξiX
i = div(PπX).

From these characterizations the following proposition follows immediately:

Proposition 3.1. Let U ⊂ RN be open and π a k-dimensional subspace of RN . Then the tangential
divergence operator divπ : C1(U ;RN ) → C(U) is linear and satisfies the following Leibniz rule for all f ∈
C1(U) and X ∈ C1(U ;RN ):

divπ(fX) = ∇f · PπX + fdivπX.

With this operator in hand we can prove the following versatile characterization of the first variation,
which also settles the issue of its well-definedness.
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Proposition 3.2. Let V = (Γ, θ) be an integral varifold in an open subset U ⊂ RN . Then the first variation
of V can be characterized as

δV (X) =

∫
U

divTxΓXdµV (x) ∀X ∈ C1
c (U ;RN )

Proof. Since Γ is rectifiable, we can find countably many C1 embeddings Fi : Ki → RN where each Ki ⊂ Rk
is compact, such that for all i 6= j

(i) Fi(Ki) ∩ Fj(Kj) = ∅

(ii) Fi(Ki) ⊂ Γ

(iii) {Fi(Ki)} cover Hk-a.e. of Γ

By looking at the preimages of each positive integer under θ and intersecting with each Fi(Ki), we can
further refine our countable collection of Ki so that θ is constant θi on each Fi(Ki). Since Φt : U → U is
a diffeomorphism for each t, these properties all continue to hold when we replace Γ with Φt(Γ), Fi with
Φt ◦ Fi, and θ with θ ◦ Φ−1

t . Let {ei} be an ON basis of Rk, and recall that if v1, . . . , vk are vectors in Rk,
then we have |v1 ∧ . . . ∧ vk|2 = det(gij) where gij denotes the k × k matrix with components vi · vj . By the
area formula, and the fact that Φt ◦ Fi is C1 and injective,

M((Φt)#(V )) =

∫
Φt(Γ)

θ ◦ Φ−1
t dHk =

∑
i

θi

∫
Φt(Fi(Ki))

dHk =
∑
i

θi

∫
Ki

J(Φt ◦ Fi)dx

=
∑
i

θi

∫
Ki

|d(Φt ◦ Fi)ye1 ∧ · · · ∧ d(Φt ◦ Fi)yek|dy

Now let y ∈ Ki and set x = Fi(y). {d(Fi)y(ei)} is a basis for TxΓ (wherever the tangent space exists) since
each Fi is an embedding. If v1, . . . , vk denotes any ON basis of TxΓ, then by the chain rule we have that

|d(Φt ◦ Fi)ye1 ∧ · · · ∧ d(Φt ◦ Fi)yek| = |d(Φt)x(v1) ∧ · · · ∧ d(Φt)x(vk)| · |d(Fi)y(e1) ∧ · · · ∧ d(Fi)y(ek)|

For ease of notation, let us call hx(t) ..= |d(Φt)x(v1) ∧ · · · ∧ d(Φt)x(vk)| =
√

det gx(t), where gx(t) is the
matrix with entries gx(t)ij = d(Φt)x(vi) · d(Φt)x(vj). Using the Area Formula Corollary, noting Φ0 = IdU
so that hx(0) = 1, we can form the difference quotient for the mass of V under the flow of X:

M((Φt)#(V ))−M(V )

t
=
∑
i

θi
t

∫
Ki

(hx(t)− 1) |d(Fi)y(e1) ∧ · · · ∧ d(Fi)y(ek)|dy

=
∑
i

∫
Ki

hx(t)− hx(0)

t
θi|d(Fi)y(e1) ∧ · · · ∧ d(Fi)y(ek)|dy

=
∑
i

∫
Ki

hx(t)− hx(0)

t
θiJFi(y)dy

=
∑
i

∫
Fi(Ki)

hx(t)− hx(0)

t
θidHk(x)

=

∫
U

hx(t)− hx(0)

t
dµV (x)

We thus need to do two things—we first need to show that hx(t) is differentiable at 0, and then we want to
pass the limit as t→ 0 through the integral. First off, since Φt is smooth and d(Φt)x(vi) = DviΦt, we note
that

∂

∂t
(d(Φt)x(vi))) =

∂

∂t
(DviΦt) =

(
Dvi

∂

∂t
Φt

)
= Dvi(X ◦ Φt),

hence
(g′x(t))ij = Dvi(X ◦ Φt)(x) · d(Φt)x(vj) +Dvj (X ◦ Φt)(x) · d(Φt)x(vi).
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Now, notice that hx(t) is indeed differentiable at t = 0 since det gx(t) is by the Jacobi Formula and the above
direct computation. By said formula we obtain

h′x(t) =
1

2
√

det(gx(t))
det(gx(t))′ =

1

2
√

det(gx(t))
det(gx(t))trace

(
g−1
x (t)g′x(t)

)
and if we evaluate at t = 0 we have, since gx(0) = I,

h′x(0) =
1

2
trace(g′x(0)) =

k∑
i=1

vi ·DviX(x) = divTxΓX(x).

Moreover, since X is compactly supported, Φt reduces to the identity map outside of the compact set sptX.
Thus, in your favorite operator norm we have ‖d(Φt)x‖ 6 C for a constant C independent of x ∈ U and
t ∈ [−1, 1]. This tells us that ‖g′x(t)‖L∞(Γ×[−1,1]) <∞. Therefore, hx is not only differentiable, but there is
also a δ ∈ (0, 1) and another C > 0 such that

|hx(t)− hx(0)| 6 C|t|

for all |t| < δ and all x ∈ Γ. Hence by applying the Dominated Convergence Theorem (and acknowledging
our assumption that V has finite mass) we can safely pass the limit through the integral and conclude that

δV (X) = lim
t→0

M((Φt)#(V ))−M(V )

t
=

∫
Γ

h′x(0)dµV (x) =

∫
U

divTxΓXdµV (x).

As an added bonus of the above analysis, we also see that the first variation is a linear functional on
C1
c (U ;RN ). With no small amount of foreshadowing, we say that V has bounded generalized mean curvature

if δV is a bounded linear functional on C1
c (U ;RN ) in the sense that for a universal C not depending upon

X ∈ C1
c (U ;RN ),

|δV (X)| 6 C‖X‖L1(U,µV ) = C

∫
U

|X|dµV

As a bit of terminology, we say that V is a stationary integral varifold if we can take C = 0, which just
says that the first variation of V vanishes along all vector fields X ∈ C1

c (U ;RN ).
Now, if V has bounded generalized mean curvature, we can apply the Riesz-Markov-Kakutani Represen-

tation Theorem and the Radon-Nikodym Theorem to establish the following additional characterization of
the first variation. This result brings us back to the theory of classical C2 surfaces having a mean curvature
vector.

Proposition 3.3. Let V = (Γ, θ) be an integral varifold in U ⊂ RN . Then V has bounded generalized mean
curvature iff there exists a bounded Borel map H : U → RN such that for all X ∈ C1

c (U ;RN ),

δV (X) = −
∫
X ·HdµV .

Proof. First of all, we can extend δ from C1
c (U ;RN ) to Cc(U ;RN ) using boundedness and density. Thus we

have in hand a continuous linear functional on Cc(U ;RN ), which by the Riesz-Markov-Kakutani Represen-
tation Theorem can be realized as

δV (X) =

∫
U

X · gd|δV |

for all X ∈ Cc(U ;RN ), where |g| = 1 µV -a.e. in U and where |δV | is the total variation measure of δV
defined as

|δV |(A) ..= sup{δV (X) : X ∈ Cc(A;RN ), |X| 6 1}

for A ⊂ U open and
|δV |(E) ..= inf{|δV |(A) : E ⊂ A, A open}

22



for arbitrary E ⊂ U . We claim that on the level of vector valued Radon measures, g|δV | = −HµV for a
bounded Borel map H : U → RN .

We must show that |δV | << µV . If A ⊂ U is open with µV (A) =
∫
A∩Γ

θdHk = 0, then for any
X ∈ Cc(A;RN ) with |X| 6 1

|δV |(A) 6 C
∫
A

|X|dµV 6 CµV (A) = 0 (c)

Thus, |δV |(E) = 0 for all E ⊂ U with µV (E) = 0, proving the absolute continuity of |δV | with respect to
µV . By the Radon-Nikodym Theorem, the derivative

DµV |δV |(x) = lim
r→0

|δV |(B(x, r))

µV (B(x, r))

exists at µV -a.e. x ∈ sptµV , and |δV | = DµV |δV |µV . Notice that by the inequalities in (c), DµV |δV | is
bounded. Define at last H : U → RN by H ..= −gDµV |δV |. Then H is bounded, Borel, has |H| = DµV |δV |,
is defined µV -a.e. in U , and satisfies for all X ∈ Cc(U ;RN )

δV (X) =

∫
U

X · gd|δV | = −
∫
U

X ·HdµV .

In the event that X ∈ C1
c (U ;RN ), then we have in addition

δV (X) =

∫
U

divTxΓXdµV (x) = −
∫
U

X ·HdµV .

We call H the generalized mean curvature vector of V .

Before moving onward to our discussion of the Monotonicity Formula, we remark that the theory presented
here for integral varifolds in open subsets of RN extends to the theory of varifolds in Riemannian manifolds.
In particular, let M be a closed Riemannian manifold embedded in RN . If U ⊂ RN is open, then an integer
rectifiable varifold V in U∩M is just an integral varifold V in U with the added property that µV (U \M) = 0.
We say that V is stationary in U ∩M iff δV (X) = 0 for all X ∈ C1

c (U ;RN ) which are tangent to M .

3.2 Monotonicity Formula

This section is dedicated to the Monotonicity Formula, which is a beautiful result finding use in many places
elsewhere in the theory of minimal surfaces. In fact, the Formula tells us that integer rectifiable varifolds
with vanishing generalized mean curvature behave in a way similar to classical minimal surfaces, in that
they are forced to bend in a way consistent with the area growth that minimal surfaces exhibit due to their
vanishing mean curvature. We will also prove here a corollary relating the density of points on the varifold
to the values of the multiplicity function θ, enabling us to also garner regularity data for θ.

We first fix some notation for the section. If g : U → R is differentiable and V = (Γ, θ) is an integral
varifold in U , then we define ∇⊥g(x) ..= PNxΓ(∇g(x)) as the projection of ∇g onto the normal space NxΓ
orthogonal to TxΓ, which exists Hk−a.e. on Γ.

Theorem 3.1 (Monotonicity Formula). Let V = (Γ, θ) be a k-dimensional integral varifold in an open subset
U ⊂ RN with bounded generalized mean curvature H. Fix any ξ ∈ U and define the map r(x) ..= |x− ξ|. For
every 0 < σ < ρ < dist(ξ, ∂U), the following estimate holds true

µV (Bρ(ξ))

ρk
− µV (Bσ(ξ))

σk
=

∫
Bρ(ξ)

1

k
H · (x− ξ)

(
1

m(r)k
− 1

ρk

)
dµV (x) +

∫
Bρ(ξ)\Bσ(ξ)

|∇⊥r|2

rk
dµV

with m(r) ..= max{r, σ}.
Moreover, the map ρ 7→ e‖H‖∞ρρ−kµV (Bρ(ξ)) is monotone increasing.

Notice here how∇⊥r(y) captures another notion of curvature for the varifold. Indeed,∇⊥r = P⊥TyΓ(∇|y|) =

P⊥TyΓ(ŷ), so that ∇⊥r(y) is the part of the unit vector ŷ (in the direction of y) normal to TyΓ. Thus, if
we stand at the origin and look at a point on Γ, this quantity tells us how our line of sight differs from
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being tangent to the varifold at that point. In other words, by integrating this (after appropriately rescaling
to ensure dimensional consistency) quantity over a region, we can get a sense of how curvy our varifold is
compared to a cone.

Proof. By translating we can assume that ξ = 0. Fix any γ ∈ C1
c ([0, 1)) with γ ≡ 1 in a neighborhood of 0.

For any s ∈ (0,dist(0, ∂U)), define the vector field Xs ∈ C1
c (U) by Xs(x) ..= γ

(
|x|
s

)
x. Since Xs ∈ C1

c (U),

we can test

δV (Xs) =

∫
U

divTxΓXsdµV (x) = −
∫
U

X ·HdµV

Fix any x ∈ Γ at which TxΓ exists, and choose for it an ON basis {1, . . . , ek}, completed to an ON basis
{e1, . . . , eN} of RN . Using these coordinates we compute

divTxΓXs =

k∑
i=1

ei ·DeiXs =

k∑
i=1

ei ·Dei

{
γ

(
|x|
s

)
x

}

=

k∑
i=1

ei ·
{
γ

(
|x|
s

)
ei

}
+

k∑
i=1

ei ·
{
γ′
(
|x|
s

)
xi
s|x|

x

}

= kγ

(
|x|
s

)
+ γ′

(
|x|
s

)
1

s

k∑
i=1

(ei · x)

(
ei ·

x

|x|

)

= kγ

(
|x|
s

)
+ γ′

(
|x|
s

)
r

s

k∑
i=1

(
ei ·

x

|x|

)2

= kγ

(
|x|
s

)
+ γ′

(
|x|
s

)
r

s

(
1−

N∑
i=k+1

(
ei ·

x

|x|

)2
)

= kγ

(
|x|
s

)
+ γ′

(
|x|
s

)
r

s

(
1− |∇⊥r|2

)
since ∇r(x) = ∇|x| = x

|x| =
∑N
k=1(ei · x|x| )ei. Therefore,∫

U

divTxΓXsdµV (x) = −
∫
U

X ·HdµV

yields

−
∫
U

X ·HdµV =

∫
U

kγ

(
|x|
s

)
dµV (x) +

∫
U

γ′
(
|x|
s

)
r

s

(
1− |∇⊥r|2

)
dµV (x).

We divide by sk+1 and integrate from σ to ρ, obtaining

−
∫ ρ

σ

∫
U

1

sk+1
(x ·H)γ

(
|x|
s

)
dµV (x)ds =

∫ ρ

σ

∫
U

k

sk+1
γ

(
|x|
s

)
dµV (x)ds

+

∫ ρ

σ

∫
U

|x|
sk+2

γ′
(
|x|
s

)(
1− |∇⊥r|2

)
dµV (x)ds

Everything in sight has compact support and is bounded, so we can safely apply Fubini’s theorem and
rearrange to find∫

U

∫ ρ

σ

(
k

sk+1
γ

(
|x|
s

)
+
|x|
sk+2

γ′
(
|x|
s

))
dsdµV (x) =

∫
U

|∇⊥r|2
∫ ρ

σ

|x|
sk+2

γ′
(
|x|
s

)
dsdµV (x)

−
∫
U

x ·H
∫ ρ

σ

1

sk+1
γ

(
|x|
s

)
dsdµV (x)

(c)

Next, we integrate by parts to compute

−
∫ ρ

σ

k

sk+1
γ

(
|x|
s

)
ds =

1

sk
γ

(
|x|
s

) ∣∣∣∣ρ
σ

+

∫ ρ

σ

|x|
sk+2

γ′
(
|x|
s

)
ds
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so that

−
∫ ρ

σ

(
k

sk+1
γ

(
|x|
s

)
+
|x|
sk+2

γ′
(
|x|
s

))
ds =

1

ρk
γ

(
|x|
ρ

)
− 1

σk
γ

(
|x|
σ

)
Consequently, it follows that (c) becomes, after rearrangement,

1

ρk

∫
U

γ

(
|x|
ρ

)
dµV (x)− 1

σk

∫
U

γ

(
|x|
σ

)
dµV (x) =

∫
U

x ·H
∫ ρ

σ

1

sk+1
γ

(
|x|
s

)
dsdµV (x)

+

∫
U

|∇⊥r|2
[

1

ρk
γ

(
|x|
ρ

)
− 1

σk
γ

(
|x|
σ

)
+

∫ ρ

σ

k

sk+1
γ

(
|x|
s

)
ds

]
dµV (x)

(cc)

Recall that this statement holds for every γ ∈ C1
c ([0, 1)), and in particular it holds on a sequence γk ↗ X[0,1),

0 6 γk 6 X[0,1). By the Monotone Convergence Theorem, we discover that (cc) is in fact true with
γ = X[0,1). We have

µV (Bρ)

ρk
− µV (Bσ)

σk
=

∫
U

x ·H
∫ ρ

σ

1

sk+1
XBsdsdµV (x)

+

∫
U

|∇⊥r|2
[

1

ρk
XBρ −

1

σk
XBσ +

∫ ρ

σ

k

sk+1
XBsds

]
dµV (x)

(ccc)

Consider now the integral terms in s. We compute∫ ρ

σ

k

sk+1
XBs(x)ds = XBρ

∫ ρ

max{|x|,σ}

k

sk+1
ds = XBρ ·

(
1

max{|x|, σ}k
− 1

ρk

)
= XBρ ·

(
1

m(r)k
− 1

ρk

)
since XBs(x) = 0 if |x| > s. This takes care of the mean curvature term, and all we have left to simplify is
the final integral:

1

ρk
XBρ −

1

σk
XBσ + XBρ ·

(
1

m(r)k
− 1

ρk

)
=

1

m(r)k
XBρ −

1

σk
XBσ =

1

rk
XBρ\Bσ =

1

|x|k
XBρ\Bσ .

Putting everything together in (ccc) yields the Monotonicity Formula:

µV (Bρ)

ρk
− µV (Bσ)

σk
=

∫
Bρ

1

k
(x ·H)

(
1

m(r)k
− 1

ρk

)
dµV (x) +

∫
Bρ\Bσ

|∇⊥r|2

|x|k
µV (x)

Next we need to show that the map ρ 7→ e‖H‖∞ρρ−kµV (Bρ(ξ)) is monotone increasing. To this end, we
define f(ρ) ..= ρ−kµV (Bρ). Then by the Monotonicity Formula and Cauchy-Schwarz, we discover that

f(ρ)− f(σ) >
1

k

∫
Bρ

x ·H
(
m(r)−k − ρ−k

)
dµV (x) > −‖H‖∞

∫
Bρ

|x|
(
m(r)−k − ρ−k

)
dµV (x)

Dividing both sides by ρ− σ and recalling that m(r) = max{|x|, σ} > σ, we find

f(ρ)− f(σ)

ρ− σ
> −‖H‖∞ρµV (Bρ) ·

σ−k − ρ−k

ρ− σ

Recall that a real valued function g is convex iff the quantity R(x, y) ..= g(x)−g(y)
x−y is monotone increasing

in one variable when the other is fixed. Since ρ 7→ ρ−k is convex, we see that

−σ−(k+1) 6 σ−(k+1) = R(0, σ) 6 R(ρ, σ) = −σ
−k − ρ−k

ρ− σ
.

Writing ρ = σ + ε, we obtain

f(σ + ε)− f(σ)

ε
> −‖H‖∞(σ + ε)µV (Bρ)σ

−(k+1) = −‖H‖∞f(σ + ε)
(σ + ε)k+1

σk+1
(L)

25



Let Ψδ be a standard mollifier and convolve both sides of the above inequality as functions of σ (we first
harmlessly extend f to all of R by setting it equal to 0 on the negative reals). We obtain by a change of
variables(

f(·+ ε)− f(·)
ε

∗Ψδ

)
(σ) =

∫
R

f(t+ ε)− f(t)

ε
Ψδ(σ − t)dt =

∫
R

Ψδ(σ − t+ ε)−Ψδ(σ − t)
ε

f(t)dt

and we estimate that (if, say, ε < 1)∣∣∣∣(f(·+ ε)− f(·)
ε

∗Ψδ

)
(σ)− (f ∗Ψ′δ)(σ)

∣∣∣∣ 6 ∫
R

∣∣∣∣Ψδ(σ − t+ ε)−Ψδ(σ − t)
ε

f(t)−Ψ′δ(σ − t)f(t)

∣∣∣∣dt
6 ‖f‖∞

∫
K

∣∣∣∣Ψδ(σ − t+ ε)−Ψδ(σ − t)
ε

−Ψ′δ(σ − t)
∣∣∣∣dt

where K is compact, since sptΨδ = Bδ. Note that ‖f‖∞ 6 ωk, since f(ρ) = ρ−kµV (Bρ) 6 ρ−kHk(Bρ) = ωk
for every ρ > 0. Since Ψδ is smooth, the integrand is uniformly bounded in ε < 1 and converges to 0 as ε
goes to 0, so we can apply the Dominated Convergence Theorem to conclude that

lim
ε↓0

(
f(·+ ε)− f(·)

ε
∗Ψδ

)
(σ) = (f ∗Ψ′δ)(σ) = (f ∗Ψδ)

′(σ)

for every σ > 0. Similarly, we find that

lim
ε↓0

(
f(·+ ε)

(·+ ε)k+1

(·)k+1
∗Ψδ

)
(σ) = (f ∗Ψδ)(σ)

for every σ > 0. We therefore establish that after convolving both sides of (L) with Ψδ and sending ε to 0,
we are left with

(f ∗Ψδ)
′(σ) + ‖H‖∞(f ∗Ψδ)(σ) > 0.

But this tells us that the function gδ(σ) ..= e‖H‖∞σ(f ∗Ψδ)(σ) has for all σ > 0

g′δ(σ) = e‖H‖∞σ {(f ∗Ψδ)
′(σ) + ‖H‖∞(f ∗Ψδ)(σ)} > 0.

Therefore, gδ is monotone increasing for any δ > 0. But then

lim
δ↓0

gδ(σ) = e‖H‖∞σf(σ) = e‖H‖∞σσ−kµV (Bσ)

is also monotone increasing, as desired.

Corollary 3.1. Let V = (Γ, θ) be a k−dimensional rectifiable varifold in an open set U ⊂ RN with bounded
generalized mean curvature. Then

θV (x) ..= lim
ρ↘0

µV (Bρ(x))

ωkρk

exists at every x ∈ U , and θV = θ for µV -a.e. x ∈ U . Moreover, we have that

(i) θV is upper semicontinuous.

(ii) θV (x) > 1 at every x ∈ sptµV .

(iii) µV (Bρ(x)) > ωke−‖H‖∞ρρk for every x ∈ sptµV and ρ < dist(x, ∂U).

(iv) Hk(sptµV \ Γ) = 0.

Proof. We first settle the existence of the limit defining θV by recalling that the map ρ 7→ e‖H‖∞ρρ−kµV (Bρ(x))
is monotone increasing and bounded below. Thus limρ↘0 e

‖H‖∞ρρ−kµV (Bρ(x)) exists, and since e‖H‖∞ρ → 1
as ρ→ 0 it follows that

ωkθV (x) = lim
ρ↘0

µV (Bρ(x))

ρk
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must exist as well. The fact that θV = θ for Hk-a.e. x ∈ Γ is due to Proposition 1.9. In particular, the two
functions agree wherever Γ has a tangent space.

To prove the upper semicontinuity property (i), we fix an x ∈ U and ε > 0, letting ρ ∈ (0, 1
2dist(x, ∂U))

be such that

e‖H‖∞σ
µV (Bσ(x))

ωkσk
6 θV (x) +

ε

2
∀σ < 2ρ

If we now select 0 < δ < ρ and any y ∈ U with |x− y| < δ, then

θV (y) 6 e‖H‖∞ρ
µV (Bρ(y))

ωkρk
6 e‖H‖∞(ρ+δ)µV (Bρ+δ(x))

ωk(ρ+ δ)k
(ρ+ δ)k

ρk
6

(
1 +

δ

ρ

)k (
θV (x) +

ε

2

)
If we take δ sufficiently small relative to ρ then it will follow that θV (y) 6 θV (x) + ε whenever y ∈ Bδ(x),
which says that lim supy→x θV (y) 6 θV (x).

Next, since θV = θ Hk-a.e. on Γ, and since θ : Γ → Z>1, it follows that {x : θV (x) ∈ Z>1} has
full µV measure. This tells us that {x : θV (x) ∈ Z>1} is dense in sptµV , and so if x ∈ sptµV ∩ U ,
the claim that θ(x) > 1 follows from upper semicontinuity. If x ∈ sptµV and ρ < dist(x, ∂U), then
e‖H‖∞ρω−1

k ρ−kµV (Bρ(x)) > ω−1
k ρ−kµV (Bρ(x)) implies that

lim
ρ↘0

e‖H‖∞ρω−1
k ρ−kµV (Bρ(x)) > 1.

Since e‖H‖∞ρω−1
k ρ−kµV (Bρ(x)) is monotonic, it follows that µV (Bρ(x)) > ωke−‖H‖∞ρρk.

Lastly, (iv) follows from Theorem 1.12 (showing that θV (x) = 0 for Hk-a.e. x ∈ U \ Γ) coupled with
conclusion (ii).

3.3 The Tilt-Excess Inequality

In this section we introduce and prove a counterpart to Caccioppoli’s Inequality for use in the theory of
varifolds. We first prove the following Lemma which is also used later in the proof of Allard’s Theorem.

Lemma 3.2. Let π and T be k-dimensional planes in RN , and let X ∈ C(RN ;RN ) be the vector field
X(x) ..= P⊥π (x). If {vk+1, . . . , vN} is an ON basis of π⊥, and fj(x) ..= x · vj, then

1
2‖T − π‖

2 = divTX =

N∑
j=k+1

|∇T fj |2.

Moreover, there is a positive dimensional constant C0 = C0(N, k) such that

|JTPπ − 1| 6 C0‖T − π‖2

Proof. Let ξ1, . . . ξk be an ON basis of T and ek+1, . . . , eN an ON basis of T⊥. In coordinates we thus have

Pπ = I −
N∑

j=k+1

vj ⊗ vj and PT = I −
N∑

j=k+1

ej ⊗ ej .
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We therefore compute

1

2
‖π − T‖2 =

1

2
‖Pπ − PT ‖2 =

1

2

∥∥∥∥∥∥
N∑

i=k+1

vi ⊗ vi −
N∑

j=k+1

ej ⊗ ej

∥∥∥∥∥∥
2

=
1

2

〈
N∑

i=k+1

vi ⊗ vi −
N∑

j=k+1

ej ⊗ ej :

N∑
i=k+1

vi ⊗ vi −
N∑

j=k+1

ej ⊗ ej

〉

=
1

2

N∑
i,j=k+1

〈vi ⊗ vi : vj ⊗ vj〉+
1

2

N∑
i,j=k+1

〈ei ⊗ ei : ej ⊗ ej〉

−
N∑

i,j=k+1

〈vi ⊗ vi : ej ⊗ ej〉

=
1

2

N∑
i,j=k+1

(vi · vj)2 +
1

2

N∑
i,j=k+1

(ei · ej)2 −
N∑

i,j=k+1

(vi · ej)2

= (N − k)−
N∑

i,j=k+1

(vi · ej)2 =

N∑
i=k+1

1−
N∑

j=k+1

(vi · ej)2


=

N∑
i=k+1

k∑
j=1

(vi · ξj)2 =

N∑
i=k+1

|∇T fi|2

which proves half of the first claim. We can also compute, starting at the last line,

N∑
i=k+1

|∇T fi|2 =

N∑
i=k+1

k∑
j=1

(vi · ξj)2 =

k∑
j=1

ξj ·

(
N∑

i=k+1

(vi · ξj)vi

)
=

k∑
j=1

N∑
i=k+1

ξj · (Dξjfi)vi

=

k∑
j=1

ξj ·

(
Dξj

N∑
i=k+1

fivi

)
=

k∑
j=1

ξj ·DξjX = divTX

Next we prove the estimate |JTPπ − 1| 6 C0‖T − π‖2, and begin by recalling that JTPπ ..=
√

det(M tM)
where M is a matrix representation of Pπ restricted to T . Thus

(M tM)ij = Pπ(ξi) · Pπ(ξj) = δij − P⊥π (ξi) · ξj − P⊥π (ξj) · ξi + P⊥π (ξi) · P⊥π (ξj)

= δij −Aij −Aji +Bij

We have that |P⊥π (ξi)| = |P⊥π (ξi)− P⊥T (ξi)| 6 C‖P⊥π − P⊥T ‖ = C‖Pπ − PT ‖ = C‖T − π‖, so if A and B are
the matrices with respective entries Aij , Bij , then ‖A‖ 6 C‖T − π‖ and ‖B‖ 6 C‖T − π‖2. Moreover, we
have that, by the above calculations,

traceA =

k∑
i=1

Aii =

k∑
i=1

P⊥π (ξi) · ξi =

k∑
i=1

N∑
j=k+1

((ξi · vj)vj) · ξi =

k∑
i=1

N∑
j=k+1

(ξi · vj)2 = divTX

By employing the Taylor expansion of the determinant we determine that

det(M tM) = 1− 2trace(A) +O(‖T − π‖2) = 1− 2divTX +O(‖T − π‖2)

which together with the first part yields, since JTPπ > 0,

|JTPπ − 1| 6 |JTPπ − 1|(JTPπ + 1) = |det(M tM)− 1| 6 2|divTX|+O(‖T − π‖2) 6 C0‖T − π‖2
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With this result in hand, we can now prove the main assertion of the current section.

Proposition 3.4 (Tilt-Excess Inequality). Let k < N be a positive integer. There exists a dimensional
constant C such that if V is an integer rectifiable varifold with bounded generalized mean curvature H in the
ball Br(x0) ⊂ RN , and π is a k-dimensional plane, then

E(V, π, x0, r/2) 6
C

rk+2

∫
Br(x0)

dist(y − x0, π)2dµV (y) +
2k+1

rk−2

∫
Br(x0)

|H|2dµV

Proof. By scaling and translating, we may assume that x0 = 0 and r = 1. We let X be the vector field
X(x) ..= P⊥π (x) of the previous lemma, and choose a smooth cutoff function ζ ∈ C∞c (B1; [0,∞)) with ζ ≡ 1
on B1/2. We test the first variation

δ(X) =

∫
B1

divTxΓXdµV (x) = −
∫
B1

X ·HdµV

with the vector field ζ2X yielding, since divTxΓ(ζ2X) = 2ζ(∇TxΓζ) ·X + ζ2divTxΓX,∫
B1

ζ2divTxΓXdµV (x) = −
∫
B1

ζ2X ·HdµV − 2

∫
B1

ζ(∇TxΓζ) ·XdµV (x)

If for a moment we set T = TxΓ, and take an ON basis {ξ1, . . . , ξk} of T , {vk+1, . . . , vN} an ON basis of π⊥,
and fj(x) ..= x · vj as in the previous lemma, then we can estimate the last integrand pointwise at x ∈ B1

using the observations

• |ξi ·X(x)| = |ξi ·
∑N
j=k+1(x · vj)vj | 6

∑N
j=k+1|(x · vj)(ξi · vj)| =

∑N
j=k+1|fj(x)||(ξi · vj)|

• |fj(x)| 6
(∑N

i=k+1 |fi(x)|2
) 1

2

=
(∑N

i=k+1 |x · vi|2
) 1

2

= |X(x)|

• ∇T fj(x) = PT (∇fj(x)) =
∑k
i=1(ξi · ∇fj(x))ξi =

∑k
i=1(ξi · vj)ξi =⇒

∑k
i=1 |ξi · vj | 6 C|∇T fj(x)|

as follows:

ζ |∇T ζ ·X| = ζ

∣∣∣∣∣
k∑
i=1

(∇ζ · ξi)(ξi ·X)

∣∣∣∣∣ 6
k∑
i=1

N∑
j=k+1

ζ|∇ζ||fj ||ξi · vj | 6 C
N∑

j=k+1

ζ|∇ζ||X||∇T fj |

applying Young’s inequality with p = q = 2 to each term (C|∇ζ||X|)
(

1
2ζ|∇T fj |

)
in the sum yields

ζ |∇T ζ ·X| 6 C|∇ζ|2|X|2 + 1
4ζ

2
N∑

j=k+1

|∇T fj |2 = C|∇ζ|2|X|2 + 1
4ζ

2divTX

where in the last equality we applied Lemma 3.2. Applying this estimate to our original quantity (using
Young’s inquality once again in the first integral)∫

B1

ζ2divTxΓXdµV (x) = −
∫
B1

ζ2X ·HdµV − 2

∫
B1

ζ(∇TxΓζ) ·XdµV (x)

6
∫
B1

|ζ|2|X||H|dµV + 2

∫
B1

ζ|∇TxΓζ ·X|dµV (x)

6
1

2

∫
B1

|ζ|4|H|2dµV +
1

2

∫
B1

|X|2dµV

+ C

∫
B1

|∇ζ|2|X|2dµV +
1

2

∫
B1

ζ2divTxΓXdµV (x)

which implies that

1

2

∫
B1

ζ2divTxΓXdµV (x) 6
1

2

∫
B1

|ζ|4|H|2dµV +
1

2

∫
B1

|X|2dµV + C

∫
B1

|∇ζ|2|X|2dµV
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On the other hand, applying Lemma 3.2 again tells us that

E(V, π, 0, 1
2 ) = 2k

∫
B1/2

‖TxΓ− π‖2dµV (x) = 2k+1

∫
B1/2

divTxΓXdµV (x) 6 2k+2 · 1

2

∫
B1

ζ2divTxΓXdµV (x)

since ζ ≡ 1 on B1/2. But recall that ζ ∈ C∞c , so that ‖∇ζ‖∞ 6 C. Therefore, since |X(x)| = dist(x, π),

E(V, π, 0, 1
2 ) 6 2k+2 · 1

2

∫
B1

ζ2divTxΓXdµV (x)

6 2k+1

∫
B1

|ζ|4|H|2dµV + 2k+1

∫
B1

|X|2dµV + C

∫
B1

|∇ζ|2|X|2dµV

6 2k+1

∫
B1

|H|2dµV + C

∫
B1

dist(x, π)2dµV (x)

just as advertised.

3.4 The Lipschitz Approximation

If the generalized mean curvature and the excess of our varifold are both small, then intuitively the varifold
does not “wiggle too much” when compared with a plane. In this situation, it might thus be expected that
the varifold (or at least a decent part of it) be realizable as some nice object, say as the image of a map
with some nice regularity. Indeed, this is what happens–a sufficiently well behaved varifold can be realized
as a Lipschitz image over a plane, at least on a slightly smaller scale. This approximation is applied several
times throughout the proofs of the Excess Decay Theorem and Allard’s Theorem, but is of course of interest
in its own right.

Theorem 3.2 (The Lipschitz Approximation). Let k < N be a positive integer. Then there exists a C > 0
satisfying the following. For any fixed l, β ∈ (0, 1) there are λ = λ(l) ∈ (0, 1] and εL > 0 such that if
V = (Γ, θ) satisfies Allard’s conditions with ε = εL, then there is a Lipschitz map f : (x0+π)∩Br/4(x0)→ π⊥

such that

(i) Lip(f) < l and Γf ⊂ Iβr(x0 + π)

(ii) θ ≡ 1 Hk-a.e. on Γ ∩Br/4(x0) ⊂ Iβr(x0 + π)

(iii) G ⊂ Γf , where G ..= {x ∈ Γ ∩Br/4(x0) : E(V, π, x, ρ) 6 λ ∀ρ ∈ (0, r/2]}

(iv) Hk(Γf \G) +Hk((Γ ∩Br/4(x0)) \G) 6 Cλ−1E(V, π, x0, r)r
k + C‖H‖∞rk+1

In the effort of proving this result, we prove two preliminary lemmas. The first lemma is of particular
interest, as leverages the versatile compactness properties of Radon measures in extracting convergence from
particular sequences of varifolds. This is then used to prove a technical lemma which provides a “height
bound” for the varifold with respect to a plane, allowing us to transfer certain data to smaller scales.

From here on the notation Br(x) ..= Br(x) ∩ π is assumed to be in force, whenever it is clear what π is.

Lemma 3.3. Let Vi = (Γi, θi) be a sequence of k-dimensional integral varifolds in B1 ⊂ Rn satisfying

Allard’s conditions with ε = ε(Vi) ↓ 0 for a given fixed plane π. Then µVi
∗
⇀ Hk π in B1.

Proof. Fix ρ ∈ (0, 1) and let Hi be the generalized mean curvature vector of Vi. Then by assumption
Vi = (Γi, θi) satisfies µVi(B1) 6 (ωk + εi) and ‖Hi‖∞ < εi.

First of all, observe that up to a subsequence we have µVi
∗
⇀ µ for some Radon measure µ on B1, since

sup
i
µVi(B1) 6 sup

i
(ωk + εi) <∞

. We will show that µ = Hk B1 where B1 = B1 ∩ π, and as a first step in this direction we prove that
sptµ ⊂ B1. In particular, fix an arbitrary φ ∈ Cc(B1) and consider the integral∫

B1

|P⊥π (y)|2φ(y)dµ(y).
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If this integral vanishes for all φ ∈ Cc(B1), then µ must to be supported in B1. For if there is a x ∈ B1 \ π
which is in sptµ, then for a small enough r > 0 we have both Br(x) ⊂ B1 \ π and µ(Br(x)) > 0, and testing
the integral with a nontrivial φ ∈ Cc(Br(x)) ⊂ Cc(B1) yields a contradiction.

Notice that |P⊥π (y)|2φ ∈ Cc(B1), and so by the weak-∗ convergence of the µVi ,∫
B1

|P⊥π (y)|2φ(y)dµ(y) = lim
i→∞

∫
B1

|P⊥π (y)|2φ(y)dµVi(y) 6 ‖φ‖∞ lim
i→∞

∫
B1

|P⊥π (y)|2dµVi(y).

We show that this limit is 0. If y ∈ B1 \Bρ, ŷ = y/|y|, then we observe that

|P⊥TyΓi(y)|2 6 |P⊥TyΓi(ŷ)|2 = |P⊥TyΓi(∇|y|)|
2 = |∇⊥TyΓi |y||

2 6
|∇⊥TyΓi

|y||2

|y|k
.

Therefore, we can estimate∫
B1

|P⊥π (y)|2dµVi(y) 6 2

∫
B1

|P⊥π (y)− P⊥TyΓi(y)|2dµVi(y) + 2

∫
B1

|P⊥TyΓi(y)|2dµVi(y)

6 C
∫
B1

‖TyΓi − π‖2dµVi(y) + 2

∫
B1\Bρ

|P⊥TyΓi(y)|2dµVi(y) + 2

∫
Bρ

|P⊥TyΓi(y)|2dµVi(y)

6 CE(Vi, π, 0, 1) + C

∫
B1\Bρ

|∇⊥TyΓi
|y||2

|y|k
dµVi(y) + Cρ2µVi(Bρ)

6 Cεi + C

∫
B1\Bρ

|∇⊥TyΓi
|y||2

|y|k
dµVi(y) + Cρ2(ωk + εi)

By the Monotonicity Formula and its Corollary we establish that the second term obeys the estimate∫
B1\Bρ

|∇⊥TyΓi
r|2

rk
dµVi(y) = µVi(B1)− µVi(Bρ)

ρk
−
∫
B1

1

k
y ·Hi

(
1

m(r)k
− 1

)
dµVi(y)

6 µVi(B1)− ωke−‖Hi‖∞ρ +

∫
B1

1

k
|y|‖Hi‖∞

(
1

ρk
− 1

)
dµVi(y)

6 µVi(B1)− ωke−‖Hi‖∞ + C‖Hi‖∞
6 (ωk + εi)− ωke−εi + Cεi

so that ∫
B1

|P⊥π (y)|2dµVi(y) 6 Cεi + {(ωk + εi)− ωke−εi + Cεi}+ Cρ2(ωk + εi)

Taking i→∞ therefore yields for any ρ ∈ (0, 1)

lim
i→∞

∫
B1

|P⊥π (y)|2dµVi(y) 6 Cρ2.

Since ρ ∈ (0, 1) was arbitrary, we conclude that indeed∫
B1

|P⊥π (y)|2φ(y)dµ(y) = lim
i→∞

∫
B1

|P⊥π (y)|2φ(y)dµVi(y) 6 ‖φ‖∞ lim
i→∞

∫
B1

|P⊥π (y)|2dµVi(y) = 0

for any φ ∈ Cc(B1), thereby proving that µ is supported in B1.
We now apply Proposition 1.4 to conclude that µ = θHk B1 for some Borel map θ : B1 → R>0. Indeed,

we can show that the k-dimension upper Hausdorff density θ∗k(µ) of µ is finite everywhere in B1. Let
x ∈ B1 and fix a ρ ∈ (0, 1 − |x|). By the Monotonicity Formula, and the fact that by weak-∗ convergence
µ(U) 6 lim infi→∞ µVi(U) for every open set U , we see that

µ(Bρ(x))

ωkρk
6 lim inf

i→∞

µVi(Bρ(x))

ωkρk
6 lim inf

i→∞

e‖Hi‖∞µVi(B1−|x|(x))

ωk(1− |x|)k
6 lim inf

i→∞

eεi(ωk + εi)

ωk(1− |x|)k
=

1

(1− |x|)k
.
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Therefore

0 6 θ∗k(µ)(x) = lim sup
ρ↘0

µ(Bρ(x))

ωkρk
6

1

(1− |x|)k
<∞

for every x ∈ B1. By Proposition 1.4, we conclude that µ = θHk for a locally integrable Borel map
θ : RN → R>0 (hence integrable on B1), and since sptµ ⊂ B1 we have that µ = θHk B1.

We now proceed onward to show that θ ≡ 1 on B1, first showing that for any X ∈ C1
c (B1;RN ) we have∫

B1

θ(y)divπX(y)dHk(y) = 0

where for convenience we have chosen an ON basis {ej} of RN with corresponding coordinate system
{y1, . . . , yk, zN−k, . . . , zN} such that π = {z = 0}. We first observe that at a point x ∈ B1 × RN−k ∩ Γi,

divπX = (divπX − divTxΓiX) + divTxΓiX = (div(PπX)− div(PTxΓiX)) + divTxΓiX.

If we let (πij) and (Tij) denote the matrix representations of the projections Pπ and PTxΓi in the standard
basis, then

div(PπX)− div(PTxΓiX) =

N∑
k=1

∂k(PπX)k − ∂k(PTxΓiX)k =
N∑
k=1

∂k(πkjX
j)− ∂k(TkjX

j)

=

N∑
k=1

(πkj − Tkj)∂kXj

so that
|div(PπX)− div(PTxΓiX)| 6 C‖DX‖∞‖TxΓi − π‖.

We can thus estimate∣∣∣∣∫
RN

divπXdµ

∣∣∣∣ =

∣∣∣∣∫
B1

θdivπXdHk
∣∣∣∣ = lim

i→∞

∣∣∣∣∫
B1

divπXdµVi

∣∣∣∣
6 lim inf

i→∞

{
C‖DX‖∞

∫
B1

‖TxΓi − π‖dµVi(x) +

∣∣∣∣∫
B1

divTxΓiXdµVi(x)

∣∣∣∣}
6 lim inf

i→∞

{
C‖DX‖∞

∫
B1

‖TxΓi − π‖dµVi(x) +

∣∣∣∣∫
B1

X ·HidµVi

∣∣∣∣}
6 lim inf

i→∞

{
C‖DX‖∞

(∫
B1

‖TxΓi − π‖2dµVi(x)

) 1
2

(µVi(B1))
1
2 + ‖X‖∞‖Hi‖∞µVi(B1)

}
= lim inf

i→∞

{
C‖DX‖∞E(Vi, π, 0, 1)

1
2 (µVi(B1))

1
2 + ‖X‖∞‖Hi‖∞µVi(B1)

}
6 lim inf

i→∞

{
C‖DX‖∞ε

1
2
i (ωk + εi)

1
2 + ‖X‖∞εi(ωk + εi)

}
= 0

Now let Y ∈ C1
c (B1;π × {0}N−k) (recalling our coordinate choice making π = {z = 0}), extend it to

B1 × RN−k by making it constant on the sets {x} × RN−k for x ∈ B1, and multiply by a smooth cutoff
function in the variables z to obtain a vector field X ∈ C1

c (RN ;RN ) which is supported in B1 ×RN−k while
agreeing with Y on B1. By the above observations, we conclude that∫

B1

θ(y)divπY (y)dHk(y) =

∫
RN

θ(x)divπY (x)d(Hk B1)(x) =

∫
RN

divπX(x)dµ(x) = 0.

By the arbitrariness of Y ∈ C1
c (B1;π × {0}N−k), we conclude that θ is a constant on B1. Indeed, take a

standard radial mollifier Ψδ on Bδ, and test with vector fields Y ∈ C1
c (B1−δ;π × {0}N−k) to establish that

(θ ∗ Ψδ)
′ ≡ 0 on the set B1−δ. We then send δ to 0 to conclude that θ is constant on B1. To wit, we have

that in coordinates

divπ(Y ∗Ψδ) =

k∑
j=1

ej ·Dej (Y ∗Ψδ) =

k∑
j=1

((
Y ∗ ∂Ψδ

∂yj

)
(y)

)
j

=

k∑
j=1

∫
B1−δ

Yj(t)
∂Ψδ

∂yj
(y − t)dHk(t)
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which by Fubini’s Theorem (as Ψδ is compactly supported) yields

0 =

∫
B1

θ(y)divπ(Y ∗Ψδ)dHk(y) =

k∑
j=1

∫
B1

∫
B1−δ

Yj(t)θ(y)
∂Ψδ

∂yj
(y − t)dHk(t)dHk(y)

=

k∑
j=1

∫
B1−δ

Yj(t)

∫
B1

θ(y)
∂Ψδ

∂yj
(y − t)dHk(y)dHk(t)

=

k∑
j=1

∫
B1−δ

Yj(t)

∫
B1

θ(y)
∂Ψδ

∂yj
(−(t− y))dHk(y)dHk(t)

=

k∑
j=1

∫
B1−δ

Yj(t)
∂

∂yj
(θ ∗Ψδ)(−t)dHk(t)

By the arbitrariness of Y ∈ C1
c (B1−δ;π × {0}N−k), it follows that ∂

∂yj
(θ ∗ Ψδ)(t) = 0 for all j and all

t ∈ B1−δ, so that θ ∗ Ψδ is a constant on B1−δ. Since θ is integrable on B1, and since Ψδ can be chosen
to have sufficiently fast decay, θ ∗ Ψδ → θ pointwise Hk-a.e. on B1, and since θ is constant on each B1−δ,
sending δ to 0 tells us that indeed θ is constant on B1. To see that θ = 1, we simply note that µ(∂Bρ) = 0
for any ρ ∈ (0, 1), so that by weak-∗ convergence θωkρ

k = θµ(Bρ) = limi→∞ µVi(Bρ). By part (iii) of the
Corollary to the Monotonicity Formula

ωkρ
k = lim

i→∞
ωke
−εiρρk 6 lim

i→∞
ωke
−‖Hi‖∞ρρk

(M.F.)

6 lim
i→∞

µVi(Bρ) 6 lim
i→∞

(ωk + εi)ρ
k = ωkρ

k

from which we conclude that θ ≡ 1.
Lastly, we remark that this convergence is in fact enjoyed by the entire sequence we began with. Indeed,

every subsequence of {µVi} has, by the compactness theorem, a sub-subsequence which weak-∗ converges to

µ = Hk B1. Therefore, µVi
∗
⇀ µ.

We now prove the second preliminary lemma:

Lemma 3.4. Let k < N be a positive integer, and fix positive constants δ, η, σ < r. Then there is an εH > 0
such that if V = (Γ, θ) satisfies Allard’s conditions with ε = εH , then

(i) Γ ∩Bη(x0) ⊂ Iδr(x0 + π).

(ii) µV (Bρ(x)) 6 (ωk + δ)ρk for every x ∈ Br−σ(x0) and every ρ ∈ (0, σ].

Proof. After scaling and translating we can assume that x0 = 0 and r = 1. Suppose to the contrary that
the lemma were false, so that there exist some positive constants δ, η, σ < 1 such that the following holds.
For every εH > 0 there exists a varifold V = (Γ, θ) supported in B and satisfying Allard’s conditions with
respect to a plane π and ε = εH such that at least one of the following alternatives holds:

1. There exists a point x ∈ Bη ∩ Γ such that |P⊥π x| > δ.

2. There exists a point x ∈ Br−σ and a radius ρ 6 σ such that µV (Bρ(x)) > (ωk + δ)ρk

Take a sequence of such varifolds Vi = (Γi, θi) satisfying Allard’s conditions with respect to the same fixed
plane π (by rotating if necessary) with εH,i ↓ 0. Let {xi} and {ρi} be the corresponding sequences of points
and radii satisfying, for each i, at least one of conditions 1, 2. By passing to a subsequence, we can assume
that at least one of the two conditions holds for every xi. We can thus work by cases. Note that, by Lemma
3.3, µVi

∗
⇀ Hk π.
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Case 1 By compactness of Bη, we can pass to a convergence subsequence, not relabeled. Suppose
xi → x. Then x ∈ Bη and by continuity |P⊥π (x)| > δ. Let 0 < t < min{δ, 1 − |x|}. Then Bt(x) ⊂ B
and Bt(x) ∩ π = ∅. Now, for all i sufficiently large, we have Bt/2(xi) ⊂ Bt(x). By Corollary 3.1 to the

Monotonicity Formula, part (ii), it follows that µVi(Bt/2(xi)) > C > 0. Moreover, Hk(∂Bt(x) ∩ π) = 0, so

by Proposition 1.3 we see that by weak star convergence µVi(Bt(x)) → Hk(Bt(x) ∩ π). Putting everything
together, we reach a contradiction:

0 = Hk(Bt(x) ∩ π) = lim
i→∞

µVi(Bt(x)) > lim sup
i→∞

µVi(Bt/2(xi)) > C > 0.

Case 2 By compactness of B1−σ, we can pass to a convergence subsequence, not relabeled. Suppose
xi → x. Then x ∈ B1−σ. Now, since 0 < ρi 6 σ < 1 − |xi| = dist(xi, ∂B) we can apply the Monotonicity
Formula and property 2 of the sequence to conclude that

(ωk + δ) 6
µVi(Bρi(xi))

ρki
6
µVi(Bσ(xi))

σk
.

Fix now any t > σ. Then for all i large Bσ(xi) ⊂ Bt(x). By comparing Hausdorff dimension, we see that
Hk(∂Bt(x) ∩ π) = 0. Thus, from Proposition 1.3 we have that

Hk(Bt(x) ∩ π) = lim
i→∞

µVi(Bt(x)) > lim sup
i→∞

µVi(Bσ(xi)) > (ωk + δ)σk.

Let t ↓ σ to conclude the contradiction

Hk(Bσ(x) ∩ π) > (ωk + δ)σk > ωkσ
k.

Remark 3.1. For our subsequent uses, it suffices to just work with δ < 1
2 , η = r

2 , and σ = 3r
4 .

We are now ready to prove the Lipschitz Approximation Theorem. The general idea is that if some part
of the varifold does not wiggle too much with respect to a plane (in a uniform sense), then we should be
able to flatten out that section of the varifold without causing any creasing or doubling up. In more precise
terms, we take the set of points in the varifold that have uniformly small excess at all small scales, and then
project this region down to the plane. We can prove that on this set the projection is injective, so that we
can invert and obtain a Lipschitz parametrization of the “good” part of the varifold. We then can extend
the map to obtain our approximation.

Proof of the Lipschitz Approximation. As always, we can assume by translating and scaling that x0 = 0 and
r = 1. We also set E(V, π, 0, 1) ..= E.

We need to produce a λ ∈ (0, 1] and an εL > 0. To this end we make two choices:

(C1) We choose λ < min{ωk, εH(δ1)}, where εH(δ1) is the εH > 0 given by Lemma 3.4 when we take

δ = δ1 = (N−k)−
1
2 l

6 , η = 1
2 , and σ = 3

4 .

(C2) We next choose εL < min{λ, εH(δ2)} where εH(δ2) is the εH > 0 given by Lemma 3.4 when we take
δ = δ2 < min{λ, (N − k)−1/2β}, η = 1

2 , and σ = 3
4 .

We first prove (ii). Let V = (Γ, θ) satisfy Allard’s conditions with ε 6 εL, and fix any point x ∈ Γ∩B1/4.
Since εL < εH(δ2), by Lemma 3.4 (ii) we find that for all ρ ∈ (0, 1/2)

µV (Bρ(x)) 6 (ωk + δ2)ρk < (ωk + λ)ρk.

Dividing by ωkρ
k we find that

µV (Bρ(x))

ωkρk
< 1 +

λ

ωk
< 2,
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and sending ρ → 0 yields, by Corollary 3.1 to the Monotonicity Formula, θV (x) = θ(x) < 2. Since θ : Γ →
Z>1, we thus find that θ ≡ 1 Hk-a.e. on Γ ∩B1/4. Moreover, by Lemma 3.4 (i), we see that

Γ ∩B1/4 ⊂ Γ ∩B1/2 ⊂ Iδ2(π) ⊂ I
(N−k)−

1
2 β

(π) ⊂ Iβ(π).

Next we prove (i) and (iii). Let x, y ∈ G, and notice that |x−y| < 1
2 since x, y ∈ B1/4. Choose r > |x−y|

such that r < { 1
2 ,

3
2 |x− y|}. Since r < 3

4 , and since x ∈ B1/4, by Lemma 3.4 (ii)

µV (Br(x)) 6 (ωk + δ2)rk < (ωk + λ)rk < (ωk + εH(δ1))rk.

By assumption, x ∈ G implies that E(V, π, x, r) 6 λ < εH(δ1). Additionally, ‖H‖∞ 6 εL < εH(δ1)
r , since

r < 1. Thus, V satisfies Allard’s conditions on the smaller ball Br(x) with respect to ε 6 εH(δ1), so by
Lemma 3.4 (i) we conclude that Γ ∩ B1/2(x) ⊂ Iδ1r(x + π). But then y ∈ Iδ1r(x + π), so y − x ∈ Iδ1r(π).
Thus,

|P⊥π (y − x)| < 2δ1r =
1

3
(N − k)−

1
2 lr <

1

3
r <

1

2
|x− y|.

By the triangle inequality and the fact that P⊥π is an orthogonal projection, we find that for any x, y ∈ G,

|Pπx− Pπy| >
√

3

2
|x− y| > 1

2
|x− y|.

Thus, the map Pπ : G → π is injective, and is invertible on its image D ..= Pπ(G). Let f : D → RN
denote the inverse map. By viewing RN = π ⊕ π⊥, we can interpret f : D → π⊥ and G as the graph
G = Γf = {v + f(v) : v ∈ D} of f over D. Notice also that ‖f‖∞ 6 (N − k)−

1
2 β, since G ⊂ Iδ2(π) and

δ2 < (N − k)−
1
2 β.

Moreover, we can show that f is Lipschitz, by observing that for any pair v, w ∈ D,

|f(v)− f(w)| = |P⊥π (v + f(v))− P⊥π (w + f(w))|
= |P⊥π (v + f(v)− w − f(w))|

<
1

2
(N − k)−

1
2 l|v + f(v)− w − f(w)|

6 (N − k)−
1
2 l|Pπ(v + f(v))− Pπ(w + f(w))|

= (N − k)−
1
2 l|v − w|

which shows that Lip(f,D) < (N − k)−
1
2 l. We can now extend f to all of B1/4 ∩ π in one of two ways. We

could either apply Kirzbraun’s Theorem directly to f , or we could use the more elementary (and constructive)
McShane’s Lemma to extend each coordinate function of f individually. To illustrate the lower-tech route,
fix a system of orthonormal coordinates on π⊥ such that f = (f1, . . . , fN−k). Then each fj : D → R has

Lip(fj , D) < (N − k)−
1
2 l, and can be extended to all of Rn while preserving this Lipschitz bound. In

particular it can be extended to B1/4∩π while also preserving ‖fj‖∞ 6 (N−k)−
1
2 β. The resulting extended

function f : B1/4 ∩ π → π⊥ then satisfies

Lipf 6 (N − k)
1
2 (N − k)−

1
2 l = l

and
‖f‖∞ 6 (N − k)

1
2 (N − k)−

1
2 β = β

just as desired, since ‖f‖∞ 6 β implies that Γf ⊂ Iβ(π). Notice that as an immediate consequence, part
(iii) follows as well, since G ⊂ Γf by definition of f !

Lastly, we need to prove the estimate in (iv). For each x ∈ F ..= (Γ \G) ∩B1/4 we can choose a ρx <
1
2

such that E(V, π, x, ρx) > λ. The collection {Bρx(x)}x∈F covers F , and supx ρx 6
1
2 . By the 5r covering

theorem, there exists a countable, disjoint subcollection {Bρi(xi)} such that F ⊂
⋃
iB5ρi(xi). Thus,

Hk(F ) 6
∑
i

ωk(5ρi)
k < ωk5kλ−1

∑
i

E(V, π, xi, ρi)ρ
k
i 6 Cλ

−1E,
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where we have used the observation that, by disjointness of the collection,

E =

∫
B

‖TyΓ− π‖2dµV (y) >
∑
i

∫
Bρi (xi)

‖TyΓ− π‖2dµV (y) =
∑
i

E(V, π, xi, ρi)ρ
k
i

Next, set K = Γf \G. By the area formula, for any y ∈ Γ we have

Hk(Pπ(G ∩ TyΓ)) =

∫
G

JTyΓPπdHk

since JTyΓPπ is the Jacobian of Pπ after being restricted to the k-plane TyΓ, and Pπ(G∩TyΓ) is an (injective
Lipshitz) image of this restriction. In particular, this formula is verifiable after action by a suitable element
of O(n) bringing the plane TyΓ to Rk ↪→ RN . But then

Hk(Pπ(G)) > Hk(Pπ(G) ∩ TyΓ) =

∫
G

JTyΓPπdHk

so we can compute

Hk(K) = Hk(Γf \G) = Hk(f(π ∩B1/4) \ f(D)) 6 Hk(f(B1/4 \D)) 6 (Lipf)kHk(B1/4 \D)

and thus

Hk(K) 6 C(ωk4−k −Hk(D)) = C(ωk4−k −Hk(Pπ(G))) 6 C

(
ωk4−k −

∫
G

JTyΓPπdHk
)
.

By Lemma 3.2 we have that |JTyΓPπ − 1| 6 C0‖TyΓ− π‖2 for some dimensional constant C0 > 0. Observe
also that by the area assumption (A1) of Allard’s Theorem, µV (B1) 6 C for a dimensional C. Therefore,

Hk(K) 6 C

(
ωk4−k −

∫
G

(
JTyΓPπ − 1

)
dHk −Hk(G)

)
6 C

(
ωk4−k +

∫
G

∣∣JTyΓPπ − 1
∣∣dHk −Hk(G)

)
6 C

(
ωk4−k + C0

∫
G

‖TyΓ− π‖2dHk −Hk(G)

)
= C

(
ωk4−k + C‖TyΓ− π‖2 −Hk(G)

)
Integrating this inequality over all y ∈ B1 with respect to µV then yields

Hk(K) 6 C(ωk4−k + CE−Hk(G)).

Next, since θ ≡ 1 on B1/4 by part (ii), we see that Hk(F ) = Hk(B1/4 ∩Γ)−Hk(G) = µV (B1/4)−Hk(G), so

Hk(K) 6 C(ωk4−k + CE +Hk(F )− µV (B1/4))

6 Cλ−1E + C(ωk4−k − µV (B1/4))

= Cλ−1E + Cωk4−k
(

1−
µV (B1/4)

ωk4−k

)
where we applied the estimate Hk(F ) 6 Cλ−1E from above. Recalling conclusion (ii) of Corollary 3.1, we
conclude the estimate for Hk(K):

Hk(K) 6 Cλ−1E + Cωk4−k
(

1−
µV (B1/4)

ωk4−k

)
6 Cλ−1E + C

(
1− e−‖H‖∞4−1

)
= Cλ−1E + O(‖H‖∞)

6 Cλ−1E + C‖H‖∞

Putting the estimates for Hk(F ) and Hk(K) together yields conclusion (iv), completing the proof of the
Lipschitz Approximation Theorem.
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3.5 Harmonic Approximations

By our last result, an integer rectifiable varifold satisfying Allard’s conditions is well approximated by the
graph of a Lipschitz function. As we mentioned earlier, if we now jumped to Step 3 of the proof of Allard’s
Theorem, we could “immediately” conclude C0,1 regularity of the varifold on a smaller scale. The next two
lemmas are what allow us to do better, and garner C1,α regularity. Intuitively, because the varifold has
small bounded mean curvature, the Lipschitz graph approximating it must somehow be close to solving the
minimal surface equation, which itself is a sort of perturbation of the Laplace equation. Thus, we might hope
that nearby to f is a graph whose components are harmonic. To make this intuition work for us we prove a
weakened form of Weyl’s Lemma 1.1, which we will apply to the components of the Lipschitz approximation
in the next part.

Lemma 3.5 (Harmonic Approximation). Let k > 1 and consider the ball Br(x) ⊂ Rk. For any ρ > 0, there

exists an εA > 0 such that if f ∈ H1(Br(x)) with
∫
|∇f |2 6 rk satisfies∣∣∣∣∫ ∇φ · ∇f ∣∣∣∣ 6 εArk‖∇φ‖∞, ∀φ ∈ C1

c (Br(x))

then there exists a harmonic function u on Br(x) with
∫
|∇u|2 6 rk and∫

(f − u)2 6 ρr2+k

Proof. Without loss of generality, by translating and scaling we can take x0 = 0 and r = 1. Define the class

H ..=

{
u : B1 → R : ∆u = 0 on B1 and

∫
B1

|∇u|2dx 6 1

}
.

Supposing that the lemma were false, there would exist a ρ > 0 and a sequence of fj ∈ H1(B1) such that

lim
j→∞

sup
φ∈C1

c (B1)
‖∇φ‖∞61

∣∣∣∣∫
B1

∇φ · ∇fjdx
∣∣∣∣ = 0

and
∫
B1
|∇fj |2dx 6 1, but

inf
u∈H

∫
B1

(u− fj)2dx > ρ.

By subtracting the average of fj over B1 from fj , we assume that the fj have average 0 while retaining the
properties above. By the Poincaré Inequality, we calculate that

‖fj‖H1(B1) 6 C‖fj‖L2(B1) + C
∑
|α|=1

‖Dαfj‖L2(B1) 6 C‖fj‖L2(B1) + C‖∇fj‖L2(B1) 6 C‖∇fj‖L2(B1) 6 C.

Thus the sequence {fj} is bounded in H1(B1), so by Banach-Alaoglu we have up to a subsequence fj ⇀ u
for some u ∈ H1(B1). Moreover, H1(B1) ⊂⊂ L2(B1) and we may assume up to a sub-subsequence that

fj
L2

→ v ∈ L2(B1), by the Rellich-Kondrachov Compactness Theorem. By uniqueness of weak limits, u = v,

so by semicontinuity of the Dirichlet energy (proof: ∇fj
∗
⇀ ∇u =⇒ |∇u| 6 lim infj→∞ |∇fj |, and Fatou’s

Lemma) we obtain ∫
B1

|∇u|2dx 6 lim inf
j→∞

∫
B1

|∇fj |2dx 6 1.

On the other hand, fix a φ ∈ C1
c (B1). Then weak convergence of fj ⇀ u in the Hilbert space H1(B1) implies∣∣∣∣∫
B1

∇φ · ∇udx

∣∣∣∣ = lim
j→∞

∣∣∣∣∫
B1

∇φ · ∇fjdx
∣∣∣∣ = 0.

By applying Green’s First Identity and Weyl’s Lemma 1.1 we conclude at once that u is harmonic, and so
u ∈ H. But fj → u strongly in L2(B1), contradicting the assumption that

∫
B1

(fj − u)2dx > ρ.
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Lemma 3.6. Let k > 1. Then there exists a C > 0 such that if u is harmonic in Br(x) ⊂ Rk, then

sup
x∈Bρ(x0)

|u(x)− u(x0)−∇u(x0) · (x− x0)| 6 Cρ2r−
k
2−1‖Du‖L2(Br(x0))

Proof. Without loss of generality we take r = 1. Fix a ρ 6 1
2 . By a Taylor expansion we have

sup
x∈Bρ

|u(x)− u(0)−∇u(0) · x| 6 ρ2

2
‖D2u‖L∞(B1/2).

Since u is harmonic, D2u is also harmonic, so we can apply the Mean Value Property 1.6, Hölder’s Inequality,
and Caccioppoli’s Inequality 1.20 to the components of D2u, finding that for any x ∈ B1/2

|(D2u)ij | = C

∣∣∣∣∣
∫
B1/2

(D2u)ijdx

∣∣∣∣∣ 6 C
∫
B1/2

|(D2u)ij |dx 6 C‖(D2u)ij‖L2(B1/2) 6 C‖(Du)ij‖L2(B1)

which yields the result.

3.6 The Excess Decay Theorem

We now enter the meatiest part of the enterprise–proving the Excess Decay Theorem. The theorem says,
loosely, that if a varifold satisfies Allard’s conditions on a ball, then on a smaller ball the excess of the varifold
decreases by at least a factor of two. This theorem allows us to prove a power law decay result for the excess,
which ultimately allows us apply our Lipschitz Approximation to a sizable portion of our varifold.

Theorem 3.3 (Excess Decay Theorem). Let k < N be a positive integer. There exist constants η ∈ (0, 1
2 )

and ε0 > 0 such that if V = (Γ, θ) satisfies Allard’s conditions on the ball Br(x0) with respect to ε = ε0, and
‖H‖∞r 6 E(V, π, x0, r), then there exists a k-dimensional plane π̄ such that

E(V, π̄, x0, ηr) 6
1

2
E(V, π, x0, r).

Proof. Even though the proof of this result is somewhat sizable, the idea is reasonably simple and goes
roughly as follows. Because the excess of our varifold is small, it is possible to approximate the varifold
with a Lipschitz function. We then produce a harmonic approximation to this Lipschitz graph, apply the
estimates for harmonic functions proven earlier, and use these estimates to produce bounds for the Tilt-Excess
Inequality, thereby yielding the result. The overarching theme, then, is to use successively better-behaved
approximations to the varifold, and then transfer estimates for these nicer objects back to the original varifold
we started with.

Estimates for the Lipschitz Approximation By translating and scaling, we can assume x0 = 0 and
r = 1. We also abbreviate E ..= E(V, π, 0, 1). We need to produce an ε0 > 0 and an η ∈ (0, 1

2 ). To start, we
restrict our choice of ε0 to ε0 < min{1, εL} for the constant of the Lipschitz approximation corresponding
to some choice of l, β which will be specified over the course of the proof.

Let f : B1/4 → π⊥ and λ = λ(l) ∈ (0, 1] be the Lipschitz approximation and constant corresponding
to l, β in the Lipschitz Approximation Theorem. Choose coordinates (y, z) = (y1, . . . , yk, z1, . . . , zN−k) on
RN such that π = {z = 0}. Let f1, . . . , fN−k be the corresponding coordinate functions of f . For each
j ∈ {1, . . . , N − k}, we set

ej ..= (

k︷ ︸︸ ︷
0, . . . , 0, 0, . . . ,

j

1, . . . , 0).

Fix such a j, and choose φ ∈ C1
c (B1/16). Define the vector field X ∈ C1

c (RN ;RN ) by X(y, z) ..= φ(y)ψ(z)ej
where ψ is a cutoff function in the z variables chosen as follows. By (ii) of the Lipschitz Approximation
Theorem 3.2 we have that B1/8 ∩ Γ ⊂ B1/4 ∩ Γ ⊂ Iβ(π). At this point we stipulate that β < 1/16. Then
ψ(z) ∈ C1(RN ) is chosen with sptψ ⊂ I1/8(π), ψ ≡ 1 on I1/16(π), and ‖ψ‖∞ 6 1. Then X(y, z) =
φ(y)ψ(z)ej = φ(y)ej on I1/16(π), while sptX ⊂ B1/4.
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Recall that by (i), (ii) of the Lipschitz Approximation Theorem 3.2, θ ≡ 1 Hk-a.e. on B1/4∩Γ ⊂ I1/16(π)
and Γf ⊂ I1/16(π), where ψ ≡ 1. Thus if ξ1, . . . , ξk are an ON basis of TxΓ with x ∈ B1/4 ∩ Γ or x ∈ Γf ,
then

divTxΓX =

k∑
i=1

ξi ·DξiX

=

k∑
i=1

(Dξiφ)ξi · ej

= (∇TxΓφ) · ej

Recalling Proposition 3.2, we use this to compute∣∣∣∣∣
∫

Γf

(∇TxΓfφ) · ejdHk(x)

∣∣∣∣∣ 6
∣∣∣∣∣
∫

Γf

(∇TxΓfφ) · ejdHk(x)− δV (X)

∣∣∣∣∣+ |δV (X)|

=

∣∣∣∣∣
∫

Γf

(∇TxΓfφ) · ejdHk(x)−
∫

Γ

divTxΓXdHk(x)

∣∣∣∣∣+ |δV (X)|

=

∣∣∣∣∣
∫

Γf

(∇TxΓfφ) · ejdHk(x)−
∫

Γ

(∇TxΓφ) · ejdHk(x)

∣∣∣∣∣+

∣∣∣∣∫
Γ

X ·HdHk
∣∣∣∣

Recall that if A, B are rectifiable sets, then for Hk-a.e. x ∈ A∩B, we have TxA = TxB. Recall also that
sptφ ⊂ B1/16 ⊂ B1/4. This allows us to estimate∣∣∣∣∣
∫

Γf

(∇TxΓfφ) · ejdHk(x)

∣∣∣∣∣ 6
∣∣∣∣∣
∫

Γf

(∇TxΓfφ) · ejdHk(x)−
∫

Γ

(∇TxΓφ) · ejdHk(x)

∣∣∣∣∣+

∣∣∣∣∫
Γ

X ·HdHk
∣∣∣∣

=

∣∣∣∣∣
∫

Γf\Γ
(∇TxΓfφ) · ejdHk(x)−

∫
Γ\Γf

(∇TxΓφ) · ejdHk(x)

∣∣∣∣∣+

∣∣∣∣∫
Γ

X ·HdHk
∣∣∣∣

6

∣∣∣∣∣
∫

(Γf\Γ)∩B1/4

(∇TxΓfφ) · ejdHk(x)

∣∣∣∣∣+

∣∣∣∣∣
∫

(Γ\Γf )∩B1/4

(∇TxΓφ) · ejdHk(x)

∣∣∣∣∣
+

∣∣∣∣∣
∫

Γ∩B1/4

X ·HdHk
∣∣∣∣∣

6 ‖∇φ‖∞
{
Hk((Γf \ Γ) ∩B1/4) +Hk((Γ \ Γf ) ∩B1/4)

}
+ ‖φ‖∞‖H‖∞Hk(B1/4 ∩ Γ)

Now recall that the set G of the Lipschitz Approximation Theorem has G ⊂ B1/4 ∩ Γ and G ⊂ Γf , meaning
that

(Γf \ Γ) ∩B1/4 ⊂ Γf \ (B1/4 ∩ Γ) ⊂ Γf \G

and
(Γ \ Γf ) ∩B1/4 = (B1/4 ∩ Γ) \ Γf ⊂ (B1/4 ∩ Γ) \G

so that by (iv) of the Lipschitz Approximation Theorem 3.2, the assumption ‖H‖∞ 6 E, and 1 6 λ−1,

Hk((Γf \ Γ) ∩B1/4) +Hk((Γ \ Γf ) ∩B1/4) 6 Hk(Γf \G) +Hk(B1/4 ∩ Γ \G)

6 Cλ−1E + C‖H‖∞
6 Cλ−1E
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Moreover, ‖φ‖∞‖H‖∞Hk(B1/4 ∩ Γ) 6 CE‖∇φ‖∞ because (recalling that φ(y)→ 0 as y → ∂B1/16 in π)

‖φ‖∞ 6 sup
a,b∈B1/16

|φ(a)−φ(b)| = sup

∣∣∣∣∫ 1

0

d

dt
(φ ◦ γ(t))dt

∣∣∣∣ = sup

∣∣∣∣∫ 1

0

∇(φ ◦ γ(t)) · γ′(t)dt
∣∣∣∣ 6 ‖∇φ‖∞diamB1/16

where the latter suprema are taken over all straight paths γ between a, b ∈ B1/16. Therefore, we conclude
that ∣∣∣∣∣

∫
Γf

(∇TxΓfφ) · ejdHk(x)

∣∣∣∣∣ 6 Cλ−1E‖∇φ‖∞ (D)

Onward! Let ξ1, . . . , ξk be an ON basis of π corresponding to the coordinates (y, z) on RN from above,
in which f has the coordinate representation f = (f1, . . . , fN−k). The metric tensor of the graph Γf is given
by the k × k matrix

gij =

(
ξi +

N−k∑
l=1

(∂yifl)el

)
·

(
ξj +

N−k∑
l=1

(∂yjfl)el

)
..= vi · vj

Here we are writing vi|y = dFy(ξi), where F : B1/4 → RN is defined by F (y) = (y, f(y)). Whenever the base
point y is clear, or immaterial, we ommit it from the notation. Because f is Lipschitz, this construction
exists almost everywhere on B1/4. Notice that because {ξi} are ON and ξ ⊥ ej , we have

|gij − δij | = |vi · vj − δij |

=

∣∣∣∣∣ξi · ξj + ξi ·

(∑
l

(∂yjfl)el

)
+ ξj ·

(∑
l

(∂yifl)el)

)

+

(∑
l

(∂yifl)el

)
·

(∑
l

(∂yjfl)el

)
− δij

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
l,h

(∂yifl)(∂yjfh)el · eh

∣∣∣∣∣∣
=

∣∣∣∣∣∑
l

(∂yifl)(∂yjfl)

∣∣∣∣∣
6
∑
l

|(∂yifl)|
∣∣(∂yjfl)∣∣

6
1

2

∑
l

|∂yifl|
2

+
1

2

∑
l

∣∣∂yjfl∣∣2 (2ab 6 a2 + b2)

6 C‖Df‖2

Because f is Lipschitz, ‖Df‖ 6 CLipf for a dimensional constant C, so if l (the bounding constant for Lipf)
is smaller than a dimensional constant, then the same estimate holds for the inverse metric:

|gij − δij | 6 C‖Df‖2.

Indeed, recall from operator theory that if X is a Banach space and V ∈ B(X,X) with ‖V ‖ < 1, then
(I − V )−1 ∈ B(X,X), (I − V )−1 =

∑∞
k=0 V

k, and thus ‖(I − V )−1‖ = (1 − ‖V ‖)−1. If we choose l small
enough so that ‖I − g‖ 6 C‖Df‖2 6 3/4, say, then we have that g = I − (I − g) is boundedly invertible
with ‖g−1‖ 6 (1− ‖I − g‖)−1 6 4. Thus,

|gij − δij | = |gij ||gij − δij | 6 C‖g−1‖‖Df‖2 6 C‖Df‖2

It will also be useful to compute the projection PTxΓf for a point x ∈ Γf (where the tangent plane
exists of course). Observe that if w ∈ RN , then because {vi|x} is a basis for TxΓ and PTxΓf (w) ∈ TxΓf ,
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we have (suppressing the base point x for readability) PTxΓf (w) · vj = w · vj . On the other hand, since
PTxΓf (w) ∈ TxΓf , there are λj such that PTxΓf (w) = λjvj . Therefore, λjgij = λjvi·vj = vi·PTxΓf (w) = vi·w,
and thus λj = gijvi · w, and consequently,

PTxΓf (w) = gij(w · vi)vj

for every w ∈ RN .
Two easy facts that we will need are the following:

ej · vl = ej ·

(
ξl +

N−k∑
i=1

(∂ylfi)ei

)
= ∂ylfj

and

∇φ · vm =

(
k∑
i=1

(∂yiφ)ξi +

N−k∑
i=1

(∂ziφ)ei

)
·

(
ξm +

N−k∑
l=1

(∂ymfl)el

)

=

(
k∑
i=1

(∂yiφ)ξi

)
·

(
ξm +

N−k∑
l=1

(∂ymfl)el

)
= ∂ymφ

Now fix x = (w, f(w)) for w ∈ B1/4. Then using the above facts

PTxΓf (∇φ(w)) · ej = (∇φ(w) · vi)gik(vk · ej) = ∂yiφ(w)gik(w)∂ykfj(w)

and applying the estimate |gik − δik| 6 C‖Df‖2, which tells us that gik = δik +O(‖Df‖2),

PTxΓf (∇φ(w)) · ej = ∂yiφ(w)gik(w)∂ykfj(w)

=
∑
i

∂yiφ(w)∂yifj(w) +O(‖Df(w)‖2)
∑
i,k

∂yiφ(w)∂ykfj(w)

6
∑
i

∂yiφ(w)∂yifj(w) +O(‖Df(w)‖2)

(∑
i

|∂yiφ(w)|2
) 1

2
(∑

k

|∂ykfj(w)|2
) 1

2

6
∑
i

∂yiφ(w)∂yifj(w) +O(‖Df(w)‖2)|∇φ(w)|‖Df(w)‖

=
∑
i

∂yiφ(w)∂yifj(w) +O(‖Df(w)‖3)|∇φ(w)|. (E)

Now set the notation ∇̄φ ..= (∂y1φ, . . . , ∂ykφ), and recall the definition of the Jacobian of f as

Jf(w) ..=

√
1 + ‖Df(w)‖2 +

∑
h,α,β

(Mh,α,β(w))2

where the sum is taken over all the size h× h minors (with coordinates (α, β)) of Df with h > 2. We thus
have the estimate

Jf(w) = 1 +
1

2

‖Df(w)‖2 +
∑
h,α,β

(Mh,α,β(w))2

+O


‖Df(w)‖2 +

∑
h,α,β

(Mh,α,β(w))2

2
 .

Recall Hadamard’s Inequality (Proposition 1.10), which tells us that

|Mh,α,β(w)| 6
h∏
i=1

‖Dfh,α,βi (w)‖
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where Dfh,α,βi (w) is the ith row (or column) of the (α, β) minor matrix of size h of Df(w). It follows that
the sum of the minors is controlled by ‖Df(w)‖, as

|Mh,α,β(w)| 6
h∏
i=1

‖Dfh,α,βi (w)‖ 6 C‖Df(w)‖h

and thus recalling h > 2, and the fact that ‖Df‖ is uniformly bounded,∑
h,α,β

(Mh,α,β(w))2 = O
(
‖Df(w)‖2

)
.

We have thereby established the estimate

Jf(w) = 1 +O(‖Df(w)‖2)

so that
|Jf(w)− 1| 6 C‖Df(w)‖2 (F)

for all w ∈ B1/4.
Next we apply the area formula to deduce∫

Γf

(∇TxΓfφ) · ejdHk(x) =

∫
B1/4

PTxΓf (∇φ(w)) · ejJf(w)dw, (S)

which is just a change of variables and follows because ∇TxΓfφ
..= PTxΓf (∇φ).

We now collect the results (D), (E), (F), and (S) together to find that∫
B1/16

∇̄φ(w) · ∇̄fj(w)dw =

∫
B1/16

k∑
i=1

(∂yiφ(w))(∂yifj(w))dw

(E)
=

∫
B1/16

(PTxΓf (∇̄φ(w)) · ej −O(‖Df(w)‖3)‖∇̄φ(w)‖)dw

=

∫
B1/16

PTxΓf (∇̄φ(w)) · ejJf(w)dw +

∫
B1/16

(1− Jf(w))PTxΓf (∇̄φ(w)) · ejdw

−
∫
B1/16

O(‖Df(w)‖3)‖∇̄φ(w)‖dw

(S)
=

∫
Γf

(∇TxΓfφ) · ejdHk(x) +

∫
B1/16

(1− Jf(w))PTxΓf (∇̄φ(w)) · ejdw

−
∫
B1/16

O(‖Df(w)‖3)‖∇̄φ(w)‖dw

which implies that∣∣∣∣∣
∫
B1/16

∇̄φ(w) · ∇̄fj(w)dw

∣∣∣∣∣ (D)

6 Cλ−1E‖∇̄φ‖∞ +

∫
B1/16

|1− Jf(w)||PTxΓf (∇̄φ(w))|dw

+ C‖∇̄φ‖∞
∫
B1/16

‖Df(w)‖2dw

(E)

6 Cλ−1E‖∇̄φ‖∞ + C

∫
B1/16

‖Df(w)‖2|∇̄φ(w)|dw

+ C‖∇̄φ‖∞
∫
B1/16

‖Df(w)‖2dw

6 Cλ−1E‖∇̄φ‖∞ + C‖∇̄φ‖∞
∫
B1/16

‖Df(w)‖2dw
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We turn now to estimating the second term above, and seek the relation ‖Df(w)‖2 6 2‖TxΓf − π‖2 for
w ∈ B1/4. This is just another computation as follows (suppressing dependence on w):

‖TxΓf − π‖2 > |Pπ(ej)− PTxΓf (ej)|2 = |PTxΓf (ej)|2 =
∣∣∂ylfjglmvm∣∣2 =

(
∂ylfjg

lmvm
)
·
(
∂yl′ fjg

l′m′vm′
)

= (∂ylfj)(∂yl′ fj)g
lmgl

′m′(vm · vm′)

= (∂ylfj)(∂yl′ fj)g
lmgl

′m′gmm′

= (∂ylfj)(∂ymfj)g
lm

=

k∑
l,m=1

(
(∂ylfj)

2 + (∂ylfj)(∂ymfj)(g
lm − δlm)

)
= |∇̄fj |2 +

k∑
l,m=1

(∂ylfj)(∂ymfj)(g
lm − δlm)

> |∇̄fj |2 − C‖Df‖2
k∑

l,m=1

(∂ylfj)(∂ymfj)

> |∇̄fj |2 − C‖Df‖3

Seeing as though ‖Df‖2 =
∑N−k
j=1 |∇̄fj |2, we sum the above over all such j and apply the bound ‖Df‖ 6 Cl

to determine
‖TxΓf − π‖2 > ‖Df‖2 − C‖Df‖3 > ‖Df‖2(1− Cl).

By taking l small enough, depending only on the dimensional constant C, we have our desired estimate

2‖TxΓf − π‖ > ‖Df(w)‖2.

Continuing, we observe that

B1/16 = (Pπ(G) ∩B1/16) ∪ (B1/16 \ Pπ(G)) ⊂ Pπ(G) ∪ (B1/4 \ Pπ(G)) = Pπ(G) ∪ (Pπ(Γf ) \ Pπ(G))

= Pπ(G) ∪ Pπ(Γf \G).

thus allowing us to write∣∣∣∣∣
∫
B1/16

∇̄φ(w) · ∇̄fj(w)dw

∣∣∣∣∣ 6 Cλ−1E‖∇̄φ‖∞ + C‖∇̄φ‖∞
∫
B1/16

‖Df(w)‖2dw

6 Cλ−1E‖∇̄φ‖∞ + C‖∇̄φ‖∞
∫
Pπ(G)

‖Df(w)‖2dw

+ C‖∇̄φ‖∞
∫
Pπ(Γf\G)

‖Df(w)‖2dw

6 Cλ−1E‖∇̄φ‖∞ + C‖∇̄φ‖∞
∫
Pπ(G)

‖Df(w)‖2dw

where we applied estimate (iv) of the Lipschitz Approximation Theorem 3.2 (and recalled that projections
are Lipschitz) to deduce that∫

Pπ(Γf\G)

‖Df(w)‖2dw 6 CHk(Pπ(Γf \G)) 6 CHk(Γf \G) 6 Cλ−1E + C‖H‖∞ = Cλ−1E.

We thus need to estimate the last integral. To do so, first observe that G ⊂ Γ ∩ Γf since G ⊂ Γf and
G ⊂ B1/4 ∩ Γ ⊂ Γ. Since Γ and Γf are rectifiable, for Hk-a.e. x ∈ G we have TxΓf = TxΓ, so

2‖TxΓ− π‖2 = 2‖TxΓf − π‖2 > ‖Df(w)‖2
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for Hk-a.e. w ∈ Pπ(G) where as before x = (w, f(w)). Therefore,∣∣∣∣∣
∫
B1/16

∇̄φ(w) · ∇̄fj(w)dw

∣∣∣∣∣ 6 Cλ−1E‖∇̄φ‖∞ + C‖∇̄φ‖∞
∫
Pπ(G)

‖TxΓ− π‖2dw

But we observe∫
Pπ(G)

‖TxΓ− π‖2dw =

∫
Pπ(G)

‖TxΓ− π‖2Jf(w)dw +

∫
Pπ(G)

‖TxΓ− π‖2(1− Jf(w))dw

=

∫
G

‖TxΓ− π‖2dHk(x) +

∫
Pπ(G)

‖TxΓ− π‖2(1− Jf(w))dw

6 E +

∫
Pπ(G)

‖TxΓ− π‖2|1− Jf(w)|dw

(F)

6 E + C

∫
Pπ(G)

‖TxΓ− π‖2‖Df(w)‖2dw

6 E + Cl

∫
Pπ(G)

‖TxΓ− π‖2dw

so that, provided we take l small enough to ensure Cl < 1,∫
Pπ(G)

‖TxΓ− π‖2dw 6
1

1− Cl
E.

We now freeze l small in accordance with all of the above arguments. From the Lipschitz Approximation
Theorem 3.2 we obtain a fixed λ = λ(l) 6 1, and we conclude the main estimate of this section:∣∣∣∣∣

∫
B1/16

∇̄φ(w) · ∇̄fj(w)dw

∣∣∣∣∣ 6 CE‖∇̄φ‖∞ ∀φ ∈ C1
c (B1/16) (Z)

Observe that at every step in determining the required smallness of l, we only had to take dimensional data
into account. Thus, l, and also λ, are dimensional constants. Thus is important because it now allows us to
bundle these constants with C.

Lastly, we notice that by a similar argument∫
B1/16

|∇̄fj(w)|2dw 6 C
∫
B1/16

‖Df(w)‖2dw

6 C
∫
Pπ(G)

‖Df(w)‖2dw + C

∫
Pπ(Γf\G)

‖Df(w)‖2dw

6 CE (U)

The Harmonic Approximation We now produce a harmonic approximation to the Lipschitz approx-
imation of our varifold. Fix a ϑ > 0, arbitrary for now, and let εA > 0 be the constant of Lemma 3.5
corresponding to ρ = ϑ. For each j ∈ {1, . . . , N − k} set f̃j ..= c0E−1/2fj , where c0 is chosen such that∫

B1/16

|∇̄f̃j(w)|2dw 6 16−k.

This is possible by (U), if we take c0 = 16−kC−1/2 in that inequality. By (Z) we see also that∣∣∣∣∣
∫
B1/16

∇̄φ(w) · ∇̄f̃j(w)dw

∣∣∣∣∣ 6 CE1/2‖∇̄φ‖∞ ∀φ ∈ C1
c (B1/16).
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Recall that we are in the business of finding an ε0 > 0. We further restrict our choice to ε0 6 ( εA
16kC

)2 for
this dimensional constant C, and freeze it for good (so that this is the ε0 of the claim). Then if V satisfies
Allard’s conditions with such an ε0, we see that∣∣∣∣∣

∫
B1/16

∇̄φ(w) · ∇̄f̃j(w)dw

∣∣∣∣∣ 6 CE1/2‖∇̄φ‖∞ 6 εA16−k‖∇̄φ‖∞ ∀φ ∈ C1
c (B1/16)

which is just what we need to apply Lemma 3.5 and obtain harmonic functions ũj : B1/16 → R with∫
B1/16

|∇̄ũj |2dw 6 16−k 6 1 and

∫
B1/16

(f̃j − ũj)2dw 6 16−2−kϑ 6 ϑ.

For each j set uj ..= c−1
0 E1/2ũj to conclude that∫

B1/16

(fj − uj)2dw 6 CϑE (e1)

Lastly, set u ..= (u1, . . . , uN−k). Then

‖D̄u‖22 6 C
∑
j

∫
B1/16

|∇̄uj |2dw 6 CE. (e2)

The Height Estimate The main estimate to be established in this section is the following:

η−2−k
∫
B4η(x0)

dist(x− x0, π̄)2dµV (x) 6 Cη−2−kϑE + Cβ2η−2−kE + Cη2E (R)

To this end let L : π → π⊥ be the map defined by

L(y) ..=

N−k∑
j=1

(∇̄uj(0) · y)ej =

N−k∑
j=1

D̄yuj(0)ej .

Set x0
..= (0, u(0)) and let π̄ be the k-plane defined by

π̄ ..= {y + L(y) : y ∈ π} .

By the mean value property of harmonic functions applied in each coordinate of u, we first observe that

dist(x0, π) = |u(0)| =

∣∣∣∣∣−
∫
B1/16

udw

∣∣∣∣∣ 6 C‖u‖L1(B1/16)

(Hölder)

6 C‖u‖L2(B1/16)

6 C‖u− f‖L2(B1/16) + C‖f‖L2(B1/16)

6 Cϑ1/2E1/2 + Cβ (d)

using the estimates (e1) and (e2) of the Harmonic Approximation above, and the bound ‖f‖∞ 6 β from
part (i) of the Lipschitz Approximation Theorem 3.2. Moreover, we have the same bound for the quantity
‖P⊥π − P⊥π̄ ‖. We apply the Tilting Subspace Lemma 1.2 from the preliminaries to secure the estimate

‖P⊥π − P⊥π̄ ‖ = ‖Pπ − Pπ̄‖ 6 C
N−k∑
j=1

|∇̄uj(0)|

Next, we apply Theorem 1.19 from the preliminaries to conclude:

‖P⊥π − P⊥π̄ ‖ 6 C
N−k∑
j=1

|∇̄uj(0)| 6 C‖u‖L1(B1/16) 6 Cϑ
1/2E1/2 + Cβ
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Now let x ∈ B1/64∩Γ. We will soon specify ϑ, β in such a way that |x0| = |u(0)| 6 Cϑ1/2E1/2+Cβ 6 1/80
(in addition to several additional conditions). Thus, |x− x0| 6 |x|+ |x0| < 1 and we have

dist(x− x0, π̄) = |P⊥π̄ (x− x0)| 6 |(P⊥π̄ − P⊥π )(x− x0)|+ |P⊥π (x− x0)|
6 ‖P⊥π̄ − P⊥π ‖|x− x0|+ |P⊥π x|+ |P⊥π x0|
6 ‖P⊥π̄ − P⊥π ‖+ dist(x, π) + dist(x0, π)

6 Cϑ1/2E1/2 + Cβ

where we have applied the two previous estimates and noted that dist(x, π) < β since B1/64 ∩ Γ ⊂ Iβ(π).

We have thereby paved the way for the following estimates, where η ∈ (0, 1
2 ) is to be determined.

In particular, we will be choosing ϑ, β, ε0, η so that B4η(x0) ⊂ B1/16, thus ensuring that θ ≡ 1 Hk-a.e.

on B4η(x0) ∩ Γ. Therefore, recalling the estimate Hk((B1/4 ∩ Γ) \ G) 6 Cλ−1E = CE of the Lipschitz
Approximation Theorem 3.2, we can calculate∫

B4η(x0)\Γf
dist(x− x0, π̄)2dµV (x) =

∫
(Γ\Γf )∩B4η(x0)

dist(x− x0, π̄)2dHk(x)

6 (Cϑ1/2E1/2 + Cβ)2Hk((Γ \ Γf ) ∩B4η(x0))

6 C(ϑ1/2E1/2 + β)2Hk((B1/4 ∩ Γ) \ Γf )

6 C(ϑ1/2E1/2 + β)2Hk((B1/4 ∩ Γ) \G)

6 C(ϑ1/2E1/2 + β)2E.

Let x = (y, f(y)) ∈ Γf , so that dist(x− x0, π̄) 6 |(y, f(y))− (0, u(0))− (y, L(y))| = |f(y)− u(0)− L(y)|
as (y, L(y)) ∈ π̄. From estimate (e1) of the Harmonic Approximation section,∫

Γf∩B4η(x0)

dist(x− x0, π̄)2dµV (x) 6
∫
B4η(x0)

dist((y, f(y))− x0, π̄)2dy

6
∫
B4η(x0)

|f(y)− u(0)− L(y)|2dy

6 2

∫
B4η(x0)

|f(y)− u(y)|2dy + 2

∫
B4η(x0)

|u(y)− u(0)− L(y)|2dy

6 CϑE + 2

∫
B4η(x0)

|u(y)− u(0)− L(y)|2dy.

By Lemma 3.6 and (e2) we have that

sup
y∈B4η(x0)

|u(y)− u(x0)− L(y)|2 6 Cη4‖D̄u‖2L2 6 Cη4E

because L(y) = D̄u(0) · y. Therefore, we conclude that∫
Γf∩B4η(x0)

dist(x− x0, π̄)2dµV (x) 6 CϑE + Cηk+4E.

At last, we are ready to exhibit estimate (R):∫
B4η(x0)

dist(x− x0, π̄)2dµV (x) =

∫
B4η(x0)\Γf

+

∫
B4η(x0)∩Γf

6 C(ϑ1/2E1/2 + β)2E + CϑE + Cηk+4E

= CϑE2 + Cβϑ1/2E3/2 + Cβ2E + CϑE + Cηk+4E
6 CϑE + Cβ2E + Cηk+4E

using that ϑ, β,E < 1 and βϑ1/2 6 1
2β

2 + 1
2ϑ.
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Applying the Tilt-Excess Inequality We now impose the conditions

Cϑ1/2 6 η
2 Cβ 6 η

2

on ϑ and β, where η is still to be determined, and where C is the constant in (d) of the Height Estimate.
Then it follows that Bη ⊂ B2η(x0) since |x0| = |u(0)| 6 Cϑ1/2E1/2 + Cβ 6 η

2 (E1/2 + 1)η < η and so if
|x| < η, then |x− x0| 6 |x|+ |x0| < 2η. This allows us to compute

E(V, π̄, 0, η) =
1

ηk

∫
Bη(0)

‖TyΓ− π̄‖2dµV (x)

6
2k

(2η)k

∫
B2η(x0)

‖TyΓ− π̄‖2dµV (x)

so that by the Tilt-Excess Inequality

E(V, π̄, 0, η) 6 2kE(V, π̄, x0, 2η) 6
C

η2+k

∫
B4η(x0)

dist(y − x0, π̄)2dµV (y) +
C

ηk−2

∫
B4η(x0)

‖H‖2dµV

6 Cη−2−kϑE + Cη−2−kβ2E + Cη2E + Cη2E2

6 Cη−2−kϑE + Cη−2−kβE + Cη2E.

Because we were so thoughtful in making sure this particular C is purely dimensional and independent of
η, β, ϑ, ε0, we can now place our restrictions on the later constants in terms of this C. In any case we can
safely assume without loss of generality that C > 1600 by increasing it if necessary. We then fix η ∈ (0, 1

2 )
such that

Cη2 =
1

4
.

Then η 6 1/80, implying that |x0| < η 6 1/80 and 4η 6 1/20 ensuring that as we requested, B4η(x0) ⊂ B1/16.
Then, choose β and ϑ (both less than 1 of course) so small that in addition to the previous conditions we
also have

Cη−k−2ϑ 6 1
8 Cη−k−2β 6

1

8
.

Freezing every constant at this point, we conclude the result:

E(V, π̄, 0, η) 6 Cη−2−kϑE + Cη−2−kβE + Cη2E
6 1

8E + 1
8E + 1

4E
= 1

2E.

3.7 The Main Theorem

We at last come to the proof of the main theorem, which we restate for easy reference:

Theorem 3.4 (Allard). Let k < N be a positive integer. Then there are positive constants ε, α, γ such that
the following holds. Let V = (Γ, θ) be a k-dimensional rectifiable varifold with bounded generalized mean
curvature H supported in the ball Br(x0), x0 ∈ sptµV , such that

(A1) µV (Br(x0)) < (ωk + ε)rk and ‖H‖∞ < εr−1.

(A2) There is a k-dimensional plane π such that E(V, π, x0, r) < ε.

Then Bγr(x0) ∩ Γ is a C1,α submanifold of Bγr(x0) without boundary. Moreover, θ ≡ 1 on Bγr(x0) ∩ Γ.

Proof. By translating and scaling, we can assume without loss of generality that x0 = 0 and r = 1. We
proceed by breaking the proof into four parts. The first establishes a decay result for the excess, and the
second utilizes it in covering part of the varifold with a Lipschitz graph. The next step shows that this
covering coincides with the varifold in a neighborhood of the origin. Finally, we use the result of part one to
show the desired regularity of the Lipschitz image.

47



Step 1: The Power-Law Decay for the Excess We need to produce positive constants ε, α, γ. The
Excess Decay Theorem 3.3 gives us an η ∈ (0, 1

2 ) and an ε0 > 0 such that if V satisfies (A1), (A2) with
ε = ε0 and ‖H‖∞ < E(V, π, 0, 1), then there exists a k dimensional plane π̄ such that

E(V, π̄, 0, η) 6
1

2
E(V, π, 0, 1).

Without loss of generality, we can impose the condition that ε0 <
1
2 as well. This allows us to utilize Lemma

3.4 with δ = ε0, yielding an εH > 0. We need to find ε > 0, so let’s start by restricting our choice to
ε < min{ε0, εH}.

If V = (Γ, θ) satisfies Allard’s conditions with this ε, then we have the following:

(i) V satisfies the hypotheses of the Excess Decay Theorem 3.3, so that there exists a k-dimensional plane
π̄ with E(V, π̄, 0, η) 6 1

2E(V, π, 0, 1), where η < 1
2 is purely dimensional.

(ii) V satisfies the hypotheses of Lemma 3.4, so that B1/2 ∩ Γ ⊂ Iε0(π) and µV (Br(x)) < (ωk + ε0)rk for

all x ∈ B1/4 and all r < 1
2 .

Fix then any x ∈ B1/4 ∩ Γ, and define the map

F (r) ..= E(r) + Λ‖H‖∞r

where Λ ..= 4η−k and E(r) ..= minτ E(V, τ, x, r), the minimization taking place over all k-dimensional sub-
spaces τ . E(r) is indeed well defined because for fixed x, r the map τ 7→ E(V, τ, x, r) is a continuous map
from from the compact Grassmanian Gk(RN ) (in the standard topology induced from its smooth manifold
structure) to R. Notice also that Λ−1 < 2−2−k since η < 1

2 .
Now, suppose that F (r) < ε0. Then E(r) = E(V, τ0, x, r) < ε0 for some τ0, and there are two possibilities

we could be dealing with:

Case 1: r‖H‖∞ 6 E(r): From point (ii) above, we have that µV (Br(x)) < (ωk + ε0)rk for all r < 1
2 ,

and moreover r‖H‖∞ 6 E(r) < ε0. Thus, we can apply the Excess Decay Theorem 3.3 to V in the ball
Br(x) ⊂ B to find, with the same universal η, a k plane π̃ such that E(V, π̃, x, ηr) 6 1

2E(V, τ0, x, r). We can
then estimate

F (ηr) = E(ηr) + Ληr‖H‖∞
6 E(V, π̃, x, ηr) + Ληr‖H‖∞

6
1

2
{E(V, τ0, x, r) + Λr‖H‖∞}

=
1

2
{E(r) + Λr‖H‖∞}

=
1

2
F (r)
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Case 2: r‖H‖∞ > E(r): Similarly we compute, using Λ−1 < 2−2−k, that

F (ηr) 6
1

2
{E(r) + Λr‖H‖∞}

6
1

2
{r‖H‖∞ + Λr‖H‖∞}

= Λr‖H‖∞
{

1

2
Λ−1 +

1

2

}
= Λr‖H‖∞

{
1

23+k
+

1

2

}
6

3

4
Λr‖H‖∞

6
3

4
F (r)

Therefore, in any case if F (r) < ε0, then F (ηr) 6 3
4F (r). Thus, F (ηr) < ε0, and we can iterate our

result to conclude that F (ηkr) 6
(

3
4

)k
F (r). In particular, notice that with r = 2−1, we can compute

F (2−1) = E(2−1) + 2−1Λ‖H‖∞ 6 2kE(V, π, 0, 1) + 2−1Λ‖H‖∞ 6 (2k + 2−1Λ)ε

where we have noticed that, since B1/2(x) ⊂ B,

E
(
2−1
)
6 E(V, π, x, 2−1) = 2k

∫
B1/2(x)

‖TyΓ− π‖2dµV (y)

6 2k
∫
B

‖TyΓ− π‖2dµV (y)

= 2kE(V, π, 0, 1)

Thus, if we further add the restriction that ε < ε0
2k+2−1Λ

, then F (2−1) 6 (2k + 2−1Λ)ε < ε0. So, we can start

the iteration at r = 2−1 and find that for every n > 0

F (ηn2−1) 6
(

3
4

)n
F (2−1) 6 C

(
3
4

)n
ε.

Note that this holds for any fixed x ∈ B1/4 ∩ Γ.
Now let r 6 2−1, and set n = blogη(2r)c(> 0). Then we can show that

E(r) 6 2kη−kE(ηn2−1) 6 2kη−kF (ηn2−1) 6 C
(

3
4

)n
ε 6 C

(
3
4

)logη(2r)−1
ε 6 Cr2αε

where C and α are positive constants depending only upon N, k. The first inequality is due to the following
observation. Since r 6 2−1, and since η < 2−1, there is an n > 0 such that ηn+12−1 < r 6 ηn2−1. This is
where the peculiar choice of n comes from, since n+ 1 > logη 2r > n. Then

E(r) 6 E(V, π̂, x, r) = r−k
∫
Br(x)

‖TyΓ− π̂‖2dµV (y)

6 2kη−(n+1)k

∫
Bηn2−1 (x)

‖TyΓ− π̂‖2dµV (y)

= 2kη−kE(ηn2−1)

where π̂ is such that E(ηn2−1) = E(V, π̂, x, ηn2−1). The last inequality follows by choosing α small, say
α 6 1

2 logη( 3
4 ), which depends only on η and thus only on N and k. To wit, with such an α we see that

(2r)2α = ( 3
4 )2α log3/4 2r = ( 3

4 )
2α

log(3/4)
log(2r) > ( 3

4 )
logη(3/4)

log(3/4)
log(2r) = ( 3

4 )
1

log η log(2r) = 3
4 ( 3

4 )logη(2r)−1
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In conclusion, we have shown that for any r 6 2−1,

E(r) 6 Cr2αε.

Step 2: Covering by a Lipshitz Graph Next, we show that B1/4 ∩ Γ is contained in the graph of a

Lipschitz function f : B1/4 → π⊥, where we write Br(x) ..= Br(x) ∩ π.
We begin by fixing any point x ∈ B1/4 and setting π = π0. For each n > 1, we select a k plane πn such

that E(2−n) = E(V, πn, x, 2
−n). By Corollary 3.1 part (ii), we have that for all x ∈ sptµV = B ∩ Γ, and for

all r < dist(x, ∂B) = 1− |x|,
µV (Br(x))

rk
> ωke

−‖H‖∞r > ωke
−1,

since ‖H‖∞ < ε < 1. In other words for any r < 1 − |x| we have for some dimensional C the estimate
µV (Br(x)) > Crk.

Now, by the triangle inequality we find that ‖πn − πn+1‖ 6 ‖πn − TyΓ‖+ ‖TyΓ− πn+1‖, and moreover
x ∈ B1/4 implies that 1− |x| > 3/4 > 1/2, so we can compute that for any n > 0

‖πn − πn+1‖ 6
1

µV (B2−(n+1)(x))

∫
B

2−(n+1) (x)

(‖πn − TyΓ‖+ ‖TyΓ− πn+1‖) dµV (y)

6
C

2−(n+1)k

∫
B

2−(n+1) (x)

‖πn − TyΓ‖dµV (y) +
C

2−(n+1)k

∫
B

2−(n+1) (x)

‖πn+1 − TyΓ‖dµV (y)

6
C

2−(n+1)k

(∫
B

2−(n+1) (x)

‖πn − TyΓ‖2dµV (y)

) 1
2

(µV (B2−(n+1)(x)))
1
2

+
C

2−(n+1)k

(∫
B

2−(n+1) (x)

‖πn+1 − TyΓ‖2dµV (y)

) 1
2

(µV (B2−(n+1)(x)))
1
2 . (Hölder)

Recall that V satisfies the hypotheses of Lemma 3.4 with δ = ε0, so that, as x ∈ B1/4 and 2−(n+1) 6 2−1,
we have

µV (B2−(n+1)(x)) < (ωk + ε0)2−(n+1)k 6 C2−(n+1)k

where C depends only on N, k since ε0 and ωk do. Thus, we can continue estimating with

‖πn − πn+1‖ 6
C

2−(n+1)k

(∫
B

2−(n+1) (x)

‖πn − TyΓ‖2dµV (y)

) 1
2

2−
(n+1)k

2

+
C

2−(n+1)k

(∫
B

2−(n+1) (x)

‖πn+1 − TyΓ‖2dµV (y)

) 1
2

2−
(n+1)k

2

= C

(
2(n+1)k

∫
B

2−(n+1) (x)

‖πn − TyΓ‖2dµV (y)

) 1
2

+ C

(
2(n+1)k

∫
B

2−(n+1) (x)

‖πn+1 − TyΓ‖2dµV (y)

) 1
2

= CE(V, πn, x, 2
−(n+1))

1
2 + CE(2−(n+1))

1
2
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But notice that

E(V, πn, x, 2
−(n+1)) = 2n+1

∫
B

2−(n+1) (x)

‖πn − TyΓ‖2dµV (y)

6 2 · 2n
∫
B2−n (x)

‖πn − TyΓ‖2dµV (y) = 2E(2−n)

so applying the power law decay proved in Step 1, for any n > 1,

‖πn − πn+1‖ 6 CE(2−n)
1
2 + CE(2−(n+1))

1
2

6 C
{

((2−n)2αε)
1
2 + ((2−(n+1))2αε)

1
2

}
= C

{
2−nαε

1
2 + 2−(n+1)αε

1
2

}
6 C2−nαε

1
2

Additionally, by (A2) it also follows that ‖π − π1‖ 6 C
{
E 1

2 + E(2−1)
1
2

}
< Cε

1
2 .

Thus, we conclude that for any j > 1,

‖π − πj‖ 6
j−1∑
k=0

‖πk+1 − πk‖ 6 Cε
1
2

j−1∑
k=0

(2−α)k 6 Cε
1
2 .

Double checking all the calculations reassures us that C still depends only upon N and k.
Therefore, for any x ∈ B1/4 and r 6 2−1, we have that

E(V, π, x, r) = r−k
∫
Br(x)

‖π − TyΓ‖2dµV (y)

6 2r−k
∫
Br(x)

‖πn − TyΓ‖2dµV (y) + 2r−k
∫
Br(x)

‖πn − π‖2dµV (y)

Choose n > 1 so large that 2−(n+1) < r 6 2−n. Then

r−k
∫
Br(x)

‖πn − TyΓ‖2dµV (y) 6 2(n+1)k

∫
B2−n (x)

‖πn − TyΓ‖2dµV (y)

= 2kE(2−n)

6 C(2−n)2αε = Cε

Meanwhile, we have by Lemma 3.4 (ii) again that

r−k
∫
Br(x)

‖πn − π‖2dµV (y) 6 Cεr−kµV (Br(x)) 6 Cε

In conclusion, we find that E(V, π, x, r) 6 Cε (i) for every x ∈ B1/4 ∩ Γ and every r 6 2−1.
—–
We now show that B1/4 ∩ Γ is covered by a Lipschitz graph. To this end, we will utilize the Lipschitz

Approximation, for which we need to specify constants l, β ∈ (0, 1). β can be fixed at will, but we will
need to be more careful with l. Start by assuming that we have chosen l < 2−1, and let λ and εL be the
corresponding constants of the Lipschitz Approximation Theorem 3.2. We further restrict our choice of ε to
ε < min{εL, C−1εL, C

−1λ}, where C is the constant in (i). Then for any x ∈ B1/4 ∩ Γ and any r 6 2−1,

we find that E(V, π, x, r) < λ. Thus, there exists a Lipschitz map f : B1/4 ∩ π → π⊥ as in the Lipschitz
Approximation Theorem 3.2 with the property that B1/4 ∩ Γ is covered by Γf .

51



Step 3: The Covering Coincides with the Varifold We just showed that B1/4 ∩ Γ is contained in
a Lipschitz graph, but we don’t yet know that any neighborhood of x0 = 0 in π actually lies completely
under Γ. In other words, Γ might be punctured with holes around the origin. Here we show that this is
not the case, and that the set D ..= Pπ(B1/4 ∩ Γ) contains B1/16. This implies that over B1/16, Γ is not
just covered by the graph of f but actually coincides with it. Before proceeding with the proof, recall the
notation Br(x) ..= Br(x) ∩ π, which is used whenever it is clear what π is.

Let then ξ ∈ ∂B1(0), and let θ be such that ωk−2θ ..= Hk(B1(0)\B1(ξ)). Suppose that D ..= Pπ(B1/4∩Γ)
does NOT contain B1/16, and let w ∈ B1/16 \ D (so that w represents a hole in Γ over B1/16). Define
r ..= infz∈D |w − z|, which must be less than 1/16 since 0 ∈ D and w ∈ B1/16. If r = 0, we extend Γ to
include (the measure zero set) w by leveraging the continuity of f while preserving all norms. Thus we can
assume that r > 0. Any sequence of points {zn} ⊂ D realizing this infimum must therefore be contained,
without loss of generality, in B1/8. By compactness, we can also assume without loss of generality that

zn → z ∈ B1/8.
Now, since 0 ∈ Γ, f(0) = 0, and Lipf 6 l, we conclude that ‖f‖∞ 6 l as well since for any x ∈ B1/4

we have |f(x)| = |f(x) − f(0)| 6 l|x − 0| < l. By taking l < 1 sufficiently small, we can thus ensure that
xn ..= (zn, f(zn)) ∈ B3/16 and also (by continuity of f) xn → x ..= (z, f(z)) ∈ B3/16. Because r < 1/16, we
thus find that Br(x) ∩ Γ ⊂ B1/4(x) ∩ Γ ⊂ Γf . Notice also that by definition of r, Br(w) ∩D = ∅.

Thus by the area formula,

µV (Br(x)) = Hk(Br(x) ∩ Γ) 6
∫
Br(z)\Br(w)

Jf

since no points of Γ lie over the set Br(w). But recall that

Jf(x) 6
√

1 + l2 + h.o.t. = 1 + 1
2 l

2 + h.o.t 6 1 + Cl2

since l < 1. Additionally, by scaling and translation invariance we find

Hk(Br(z) \ Br(w)) = Hk(r(B1(0) \ B1(w−zr )))

= rkHk(B1(0) \ B1(w−zr ))

6 rkHk(B1(0) \ B1(ξ))

= rk(ωk − 2θ),

so we estimate µV (Br(x)) 6 (ωk − 2θ)(1 + Cl2)rk.
Now, if necessary, make C bigger and take l smaller so that

(ωk − 2θ)(1 + Cl2) = ωk − θ. (^)

On the other hand, by Corollary 3.1

µV (Br(x)) > ωkr
ke−‖H‖∞r > ωkr

ke−ε

since r < 1/16 and x ∈ B3/16. We are therefore faced with

ωkr
ke−ε 6 (ωk − θ)rk

which yields a contradiction as soon as ε is smaller than a dimensional constant. Thus, D = Pπ(B1/4 ∩ Γ)
must contain B1/16 = B1/16 ∩ π.

Step 4: The Regularity of the Lipschitz Covering Lastly, we prove the C1,α regularity of Γ. From
Step 3, we know that Γf = B1/4 ∩ (B1/16 × π⊥) ∩ Γ. For each z ∈ B1/32, and each r < 1/32, let πz,r be a
k-dimensional plane such that

E(V, πz,r, (z, f(z)), r) = min
τ

E(V, τ, (z, f(z)), r) 6 Cr2αε < Cε
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where we noticed that (z, f(z)) ∈ B1/4 ∩ Γ and applied the power law decay of the excess from Step 1.
We also know that E(V, π, (z, f(z)), r) 6 Cε, so by calculations identical to those of Step 2, we conclude

that ‖π − πz,r‖ 6 Cε
1
2 (note that the right hand side is independent of z). By now choosing ε smaller

than a dimensional constant, we can thus realize each πz,r as the image of a linear map Az,r : π → π⊥ with
‖Az,r‖ 6 1.

Let now A,B : π → π⊥ be any two linear maps with ‖B‖ 6 Cl. Let τA and τB denote their respective
graphs over π, and PA, PB the corresponding projections onto τA and τB . If we choose l in (^) to be smaller
than yet another a geometric constant (adjusting the constant C in that formula as necessary), then we can
ensure that |PB(v)| 6 1

2 |v| for every v ∈ π⊥. Indeed, as l ↓ 0, ‖PB −Pπ‖ → 0, and Pπ(v) = 0 for all v ∈ π⊥.
Therefore, |PB(v)| = |(PB − Pπ)(v)| 6 ‖PB − Pπ‖|v| < 1

2 |v| provided l is sufficiently small.
Now fix an orthonormal basis e1, . . . , ek of π and observe that

|A(ei)−B(ei)| = |(ei +A(ei))− (ei +B(ei))|
= |PA(ei +A(ei))− PB(ei +B(ei))|
6 |PA(ei)− PB(ei)|+ |PA(Aei)− PB(Aei)|+ |PB(Aei)− PB(Bei)|
= |PA(ei)− PB(ei)|+ |PA(Aei)− PB(Aei)|+ |PB(Aei −Bei︸ ︷︷ ︸

∈π⊥

)|

6 C‖PA − PB‖+ 1
2 |A(ei)−B(ei)|

= C‖τA − τB‖+ 1
2 |A(ei)−B(ei)|

Thus we conclude that |A(ei) − B(ei)| 6 C‖τA − τB‖, which implies that ‖A − B‖ 6 C‖τA − τB‖ since if
v = λiei ∈ π, then

|(A−B)(v)| = |(A−B)(λiei)| 6 λi|(A−B)(ei)| 6 C‖τA − τB‖|v|.

We finally freeze l for good.
Recall that since f is Lipschitz, Df(y) : B1/4 ∩ π → π⊥ has (a.e.) as its image T(y,f(y))Γ whenever

y ∈ B1/16, since we just proved that Γ coincides with Γf over B1/16.
For our z ∈ B1/64 and r < 1/64 we have the inclusion f(Br(z)) ⊂ B2r(z, f(z)). Indeed, if x = (w, f(w))

for some w ∈ B1/64, then |(w, f(w))−(z, f(z))|2 = |w−z|2 + |f(w)−f(z)|2 6 r2(1+ l2) < 4r2. Since Jf > 1,
we estimate by the Area Formula (Theorem 1.14) and the above calculations that∫

Br(z)

‖Df(y)−Az,2r‖2dy 6
∫
Br(z)

‖Df(y)−Az,2r‖2Jf(y)dy

6 C
∫
Br(z)

‖T(y,f(y))Γ− πz,2r‖2Jf(y)dy

6 C
∫
B2r(z,f(z))

‖TyΓ− πz,2r‖2dµV (y)

= CrkE(V, πz,r, (z, f(z)), 2r)

6 Crk+2α

Again, this holds for any z ∈ B1/64 and r < 1/64. Let Dfz,r denote the average of Df over Br(z). Then
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we compute for any such z, r∫
Br(z)

‖Df(y)−Dfz,r‖2dy =
∑
i,j

∫
Br(z)

|(Df)ij(y)− (Df)ijz,r|
2dy

=
∑
i,j

min
a∈R

∫
Br(z)

|(Df)ij(y)− a|2dy

= min
A∈Mk×(N−k)

∫
Br(z)

‖Df(y)−A‖2dy

6
∫
Br(z)

‖Df(y)−Az,2r‖2dy

6 Crk+2α

From this we conclude that there exists a C0,α function g such that g = Df on B1/64. To do so, we apply
Campanato’s Criterion 1.17. Indeed, notice that for all z ∈ B1/64 and all r > 0 the following uniform decay
condition holds for each component function of Df :(

1

rk

∫
B1/64∩Br(z)

|Df ij(y)− (Df ij)z,r|
2dy

) 1
2

6 Crα

Thus, for every i, j there is a gji ∈ C0,α(B1/64) such that gji = Df ji a.e. on B1/64. Let g ∈ C0,α(B1/64;Mk×(N−k))

be defined by g = (gji ). Then g = Df a.e. on B1/64, which proves that f ∈ C1,α(B1/64).

4 References

References

[BV16] T. Bourni and A. Volkmann. An allard type regularity theorem for varifolds with a hölder condition
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